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Abstract
This paper introduces AIM-TRUE, a project leveraging meta-learning methods to enhance the sustain-
ability and resource efficiency of vehicle maintenance in the automotive aftermarket. By addressing
challenges such as intermittent demand and complex global supply chains, the project aims to develop
innovative predictive models to optimise inventory control, reduce unnecessary transport, and minimise
part scrapping. Initial results show that combining machine learning with uncertainty-aware strategies
significantly improves forecasting accuracy and operational efficiency, highlighting the potential for
more sustainable and cost-effective vehicle maintenance logistics.

1. Introduction

Europe’s automotive industry is increasingly facing the need for concrete solutions to the
challenges related to resource-efficient and sustainable transport systems. With more data
available, it has become apparent that Artificial Intelligence (AI) and Machine Learning (ML)
methods can also help to reduce climate emissions and energy consumption through more
efficient use of resources in vehicle aftermarket operations. Volvo Group aims to deliver complete
transport solutions to its customers, from personalised vehicles suited for any task at hand
– be it hauling goods over thousands of kilometres or distributing them within a few city
blocks – to services that keep the vehicles running efficiently throughout their lifetime. Doing it
successfully and with sustainable resource utilisation requires new ML-based, flexible, and green
services that reduce costs while increasing customer satisfaction and maintaining a competitive
advantage.

All these goals can only be achieved by anticipating where and when a part will be needed
and delivering that part to the correct region before this need even arises, thus reducing costs
and increasing service levels. The AIM-TRUE (AI-driven Automotive Service Market: Towards
more Resource-Efficient and Sustainable Vehicle Maintenance) project focuses on using state-
of-the-art methods based on meta-learning to improve the services provided by the Service
Market. In particular, more predictability enables the use of environmentally friendly transport
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channels and reduces the scrapping of parts due to obsolescence.
AIM-TRUE leverages ML to better understand the factors affecting parts availability and

enable individualised inventory control policies. The project’s primary goal is to improve
heavy-duty aftermarket resource efficiency and sustainability by reducing three aspects: urgent
transport orders, back-and-forth haulage, and part scrapping. The new generation of predictive
logistics provides opportunities for better system understanding, large-scale optimisation,
quality monitoring, and new data-driven innovative services, all of which are prerequisites for
the efficient use of resources – while providing the right parts at the right place and time.

The project started in January 2024, with three partners: Volvo Service Market Logistics,
Rejmes Transportfordon, and the Center for Applied Intelligent Systems Research at Halmstad
University.

We aim to create a demand forecasting model in combination with decision support tools
that ensure vehicle components are not unnecessarily produced or transported. However, doing
so involves issues like intermittent or sporadic demand, delayed information about the needs,
imminent drops in availability, and limited supply chain capacity. Solving these challenges
in a complex worldwide system that is typical for automotive OEM’s dealer network requires
a novel approach to reach a balance between incoming and outgoing part flows. Therefore,
within the AIM-TRUE project, we explore, for the first time, state-of-the-art forecasting models
based on meta-learning, allowing us to integrate new global data sources (such as predictive
maintenance information) while efficiently adjusting the predictions according to specific, local
conditions.

In AIM-TRUE, we will specifically address two key challenges related to meta-learning
research. The first one is meta-generalisation, which refers to the problem of generalising from
meta-train to meta-test tasks for a large number of tasks, as well as learning supplementary
tasks and noise modelling. The majority of today’s solutions assume that the task distribution
is unimodal, while logistics data from Volvo SML has a highly heterogeneous task structure
with relatively complex relations across a number of somewhat well-separated task families.
The second challenge concerns tracking the time relationship between meta-tasks that, in
reality, do not switch at random but rather follow technical and business principles. In this
case, continual learning provides some techniques worth investigating with more explainable
semantic meaning.

Within the AIM-TRUE project, we work primarily with model-based meta-learning methods
due to their flexibility in modelling the internal task dynamics and their broader applicability
compared to most optimisation- and metric-based techniques. It is crucial for us to efficiently
handle different aspects of variability, for example, across spare parts, dealers, vehicle models,
geographical regions, and more. An important open question, scientifically, is whether meta-
learning techniques actually learn how to perform “rapid learning” or primarily discover robust
high-level features to be reused across tasks. There is some evidence for the latter, which
indicates that there is room for improvement by integrating novel techniques that rely more on
the former.



2. Intermittent Demand Forecasting

Intermittent demand forecasting is especially important in spare parts and logistics in the
automotive industry, where demand occurs irregularly with frequent zero-demand periods. This
makes statistical forecasting techniques unreliable, as they often fail to capture the sporadic
nature of such demand. Effective forecasting helps reduce inventory costs while maintaining
high service levels in supply chains.

We have evaluated the performance of a conventional Machine Learning algorithm (XGBoost),
Neural network-based models (NN), and Kolmogorov-Arnold Networks (KAN), to predict the
next month’s demand based on descriptive features about the parts, the dealers, and the sales
history. We also proposed a novel time-dependent NN-based model, 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡), to predict
the demand at specific times in the future, allowing for a longer planning window. In this
regard, the training data is transformed to include the next month’s sales and the first sales
after a period 𝑡 of zero sales. We also utilised a meta-learning model based on Model-Agnostic
Meta-Learning for Multimodal Task Distributions (MAML) [1], to train a model to be adaptable
to future demand periods where the task is defined as a Dealer-Part-Period combination.

The evaluation of intermittent demand forecasting models can also be challenging due to
the frequent zero-demand periods. An evaluation metric such as Mean Absolute Error (MAE)
will be affected by the frequency of zeros, favouring models that often predict zeros. In this
work, we decomposed MAE into two components by observing the MAE value for the periods for
which there is a non-zero demand; we annotate this as MAE1, while for periods with no demand,
we calculate the MAE as MAE0. The time-dependent model 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡), is evaluated using both
MAE0 and MAE1 for the next month’s demand, along with MAE𝑡 for the demand at time 𝑡.

The decomposition of MAE allowed us to optimise models to excel at forecasting a certain
type of sales. We carried out evolutionary feature and sample selection using XGBoost in a
wrapper setting [2] while optimising for different metrics MAE0 and MAE1 (in Table 1 we refer to
the model optimised based on MAE0 as XGBoost w/ FS MAE0). The feature selection optimisation
is guided in these two scenarios to focus on features that help predict periods with no demand
(when optimising MAE0), or to keep good predictors of demand periods (MAE1).

Table 1 lists the results of the compared models. We may observe that the NN model achieved
the best overall MAE, however, it’s clear that the good MAE performance is largely due to excelling

Table 1
Models’ results, the bold indicates the best result for the metric.

Model MAE MAE0 MAE1 MAE𝑡

XGBoost 1.82 0.51 7.43 N\A
XGBoost w/ FS MAE 1.82 0.50 7.49 N\A
XGBoost w/ FS MAE0 1.82 0.49 7.47 N\A
XGBoost w/ FS MAE1 1.87 0.57 7.39 N\A

NN 1.66 0.19 7.93 N\A
KAN 1.94 0.54 7.87 N\A

DropKAN [3] 1.92 0.54 7.77 N\A
MAML 1.95 0.10 9.86 N\A

Forcast(t) 1.80 0.48 7.44 6.33



at predicting zero/demand periods as evident with the low MAE0 result. XGBoost, in general,
offered a better MAE1 performance when compared to the neural-network-based models. In
particular, when feature selection was carried out for MAE1. KAN-based models KAN and
DropKAN performed generally worse than XGBoost models, but their MAE1 performance was
better than the neural-network-based models. It must be stated that, unlike the black-box
neural-network-based models, KAN-based models offer explainability. The meta-learning
MAML demonstrated the best MAE0 performance. However, this happens at the expense of
the worst MAE1 performance across tested methods. The Forecast(t) model showed a balanced
performance between MAE0 and MAE1, achieving the second-best performance on the total MAE
with the added value of predicting a longer future demand window.

3. Prediction Intervals for ML-driven Automotive Service
Market Logistics

This work [4] explores how machine learning (ML) and prediction intervals (PIs) can enhance
demand forecasting and inventory control in Volvo Group’s Service Market Logistics (SML) divi-
sion, specifically for spare parts distribution in Sweden. Addressing the challenge of balancing
high service levels with cost efficiency, the study uses real operational data and discrete-event
simulation (DES) to assess forecasting strategies under different types of forecast errors—random,
systematic (bias), and intermittent [5, 6].

Traditional forecasting models like SES [7] and Croston’s method [8] were compared to
advanced ML models such as XGBoost [9]. To capture uncertainty, the study employed nonpara-
metric bootstrapping to construct PIs [10], integrating them into inventory decision-making
via methods such as the Triangular and Beta-PERT distribution-based estimates [11, 12]. These
strategies showed that accounting for uncertainty helps reduce costs and improve service
levels—particularly for low-demand, high-variability parts—while overly conservative strategies
like using the PI upper bound increased inventory costs significantly.

The findings support the view that integrating ML-based forecasting with uncertainty-aware
inventory strategies tailored to product characteristics leads to more sustainable, resilient, and
cost-effective supply chains.

4. Pragmatic Paradigm for Multi-stream Regression

This work by Gunasekara et al. [13] addresses the challenges of time series nowcasting in
dynamic multi-stream data environments, especially under concept drift. Traditional deep
learning models struggle with adaptability and catastrophic forgetting when exposed to evolving
data distributions. Stream learning offers adaptability but lacks batch model accuracy. The
authors propose a hybrid paradigm combining a batch-trained neural network as a feature
extractor and a streaming regressor (SOKNL) [14] to predict either directly or the residuals of
the base model.

This hybrid method utilizes historical data to learn embeddings for stream identifiers, such
as store and product IDs, which are input into a Multi-Layer Perceptron (MLP) and regressor



for initial predictions. The streaming regressor is incrementally updated using different rep-
resentations (raw features, embeddings, or final layer outputs), enabling adaptability during
deployment. Experiments on the NZ Energy Pricing and Kaggle Demand Forecasting datasets
show that residual learning approaches consistently improve performance over static models,
especially when the batch model performs reasonably well [13].

Overall, the proposed approach achieves a balance between learning efficiency and prediction
accuracy in evolving data streams. Future work includes comparison with online time series
models like OneNet and deeper stream-level evaluations.

References

[1] R. Vuorio, S.-H. Sun, H. Hu, J. J. Lim, Model-agnostic meta-learning for multimodal task
distributions, 2019. URL: https://openreview.net/forum?id=HkzOWnActX.

[2] M. G. Altarabichi, S. Nowaczyk, S. Pashami, P. S. Mashhadi, Surrogate-assisted genetic algo-
rithm for wrapper feature selection, in: 2021 IEEE congress on evolutionary computation
(CEC), IEEE, 2021, pp. 776–785.

[3] M. G. Altarabichi, Dropkan: Regularizing kans by masking post-activations, arXiv preprint
arXiv:2407.13044 (2024).

[4] J. Kamil, M. Amer, Prediction Intervals for ML-driven Automotive Service Market Logistics,
Master’s thesis, Halmstad University, Halmstad, Sweden, 2025. Master’s Programme in
Artificial Intelligence.

[5] J. Banks, J. S. Carson, B. L. Nelson, D. M. Nicol, Discrete-event system simulation, 4th ed.,
Pearson Prentice Hall, 2005.

[6] D. Hellström, M. Johnsson, Simulation-based inventory optimization, International Journal
of Physical Distribution & Logistics Management 50 (2020) 861–879.

[7] R. G. Brown, Statistical forecasting for inventory control, McGraw-Hill, New York, 1959.
[8] J. D. Croston, Forecasting and stock control for intermittent demands, Operational

Research Quarterly 23 (1972) 289–303.
[9] T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
2016, pp. 785–794.

[10] P. Hall, A. Rieck, Bootstrap methods for time series, in: Bootstrap Methods for Time
Series, Springer, 2001, pp. 1–10.

[11] C. Clark, The pert model for the distribution of an activity time, Operations Research 10
(1962) 405–406.

[12] D. Vose, Risk analysis: A quantitative guide, 3rd ed., Wiley, 2008.
[13] N. Gunasekara, S. Nowaczyk, S. Pashami, Pragmatic paradigm for multi-stream regression,

in: International Symposium on Intelligent Data Analysis, Springer, 2025, pp. 358–372.
[14] Y. Sun, B. Pfahringer, H. M. Gomes, A. Bifet, Soknl: A novel way of integrating k-nearest

neighbours with adaptive random forest regression for data streams, Data Min. Knowl.
Discov. 36 (2022) 2006–2032.

https://openreview.net/forum?id=HkzOWnActX

	1 Introduction
	2 Intermittent Demand Forecasting
	3 Prediction Intervals for ML-driven Automotive Service Market Logistics
	4 Pragmatic Paradigm for Multi-stream Regression

