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Abstract
It has been shown that machine learning (ML) models can be susceptible to data inference attacks that
aim to estimate the training data. By probing the model with carefully crafted queries, attackers could
retrieve confidential information, such as private attributes of individuals. However, the risk of data
leakage in tabular data has not been extensively explored due to the inherent complexity e.g. diverse
feature types, not having access to weights or model architecture and the problem of evaluating the
retrieved attack results. Given that tabular data is commonly used in high-stakes fields such as healthcare,
it is crucial to explore inference attack risk implications thoroughly. This paper describes ongoing work
to carry out and explore implications of black-box inversion attack. The primary experimental results are
based on two publicly available tabular heart disease datasets. This short-paper identifies experimental
challenges with black-box attack scenarios and paves the way for future studies and research questions.
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1. Introduction

Machine learning adoption in various industries brings significant concerns regarding the
safeguarding of sensitive data [1, 2, 3]. Privacy-preserving machine learning aims to protect
sensitive information. However, its application in critical domains such as healthcare, where
models are often trained on tabular registry data, requires further research, as concerns about
data leakage remain insufficiently addressed. Vero et al. [4] explain that attacks on tabular
data face two primary challenges. The first is addressing the complexity of mixed discrete-
continuous optimization caused by the presence of both discrete and continuous features.
The second is developing a reliable method to quantify the uncertainty of the reconstruction.
This is particularly important because, unlike image and text data, the quality of tabular data
reconstruction cannot be evaluated with the same intuition and speed through human inspection.
Attacks in ML can be categorized into three types: (i) attacks targeting the training data

(data inference attacks), (ii) attacks exploiting the model parameters (model extraction attacks),
and (iii) attacks aimed at deceiving the functionality of models (adversarial attacks)[5, 6, 7].
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Figure 1: Considered attack scenario.

These threats put the security of deployed models in danger, making it crucial to develop
robust defense mechanisms[8, 9]. This paper focuses on data inference attacks that potentially
could expose sensitive training data in a black-box scenario (where the attacker has a lack of
information about the model weights and architecture). In this paper, we focus on the difficult
problem of black-box model inversion attack, a subset within the broader spectrum of data
inference attacks [10]. Figure 1 depicts the considered attack scenario where an attacker has
access to model output via input crafted by the attacker to exploit the model.

2. Methods

This section describes the methods used for investigating tabular data inference attacks. We
hypothesize a scenario where a hospital owns and protects sensitive patient data in a table
format. Further, the hospital internally exposes an ML-based prediction service where the
underlying model is trained on the patient data. The model is consumed by various departments
but also intercepted by an adversary, as illustrated in Figure 1. In this work, we assume a neural
network ℎ with 𝑙 number of hidden layers. ℎ is able to feed-forward the observations of patient 𝑖,
i.e. 𝑥𝑖 and where the output is a Softmax layer with 𝑚 output neurons, representing the absence
or presence of the disease class label, Softmax0, Softmax1, ..., Softmax𝑚. The network is assumed
to be slightly overfitted to the training data to make the scenario focus on the risks for data
inversion attacks. Overfitting has been identified to be one of the components of an increased
risk for successful attacks [11]. In the following section, we describe how such a black-box
prediction service can be attacked.

2.1. Attack Scenario

The exposed prediction service described earlier enables the attacker to query ℎ with input
𝑥 and observe output ℎ(𝑥), a black-box scenario. As described in of the earliest attempts of



data reconstruction attacks, e.g. Fredrikson et al. [10] exploit models by starting at an arbitrary
random initialized input 𝑥0 and systematically adjusting the input towards a data point, 𝑥′
potentially close to a prototypic datapoint 𝑥𝑘𝑗 with index 𝑗 of a classification target 𝑘, found
in the training data. As in [10] we explore methods of optimization which hopefully let 𝑥0
converge to a data point 𝑥𝑘𝑗 . One option, is for the adversary, if possible to load the model and
use back-propagation to adjust the input in order to minimize a loss

ℓ = −Softmax𝑘 (1)

for target classification target 𝑘 (e.g. either presence or absence of a heart disease), which can be
seen as a white-box attack, leveraging on explicit calculations of the first-order partial derivatives
of the input with respect to the loss ℓ. However, in this paper, we assume a black-box model.
Therefore another option, applied in this work is to estimate and make use of the gradients
(Jacobian and Hessian) indirectly by optimization methods such as the quasi-Newton algorithm
BFGS which search for a solution to the unconstrained nonlinear optimization problem.

2.2. Assessment of reconstructed training data and experimental setup

To assess the success of a reconstruction attack the reconstructed prototypes are compiled into
a set of distances

𝑑 = ‖(𝑥′1 − 𝑥𝑘𝑗 , 𝑥′2 − 𝑥𝑘𝑗 , … , 𝑥′𝑖 − 𝑥𝑘𝑗 )‖ (2)

i.e. the Euclidian distance between the found solution 𝑥′𝑖 and the closest datapoint 𝑥𝑘𝑗 found in
the training dataset. Distances can be calculated using all or individual features. A distance
histogram is visualized in order to analyze and interpret the distribution of closeness to (or
reconstruction of) training data points.
We focus on two publicly available healthcare-related datasets. The first dataset (A), UCI

Heart Disease Data 1 consists of approximately 1K observations with 14 features and a target
variable indicating presence of 4 heart disease types as well as the lack of any heart disease.
Some attributes could be considered potentially sensitive by their combination, for intentionally
or unintentionally re-identifying a person by their characteristics, e.g.: Age, and Sex. The second
dataset (B), Heart Failure Clinical Records 2 contains 12 features used for predicting if a patient
deceased during the follow-up time.
For the base models, we use grid-search to find a suitable number of hidden layers, number

of of neurons in the hidden layers, and learning rate (Adam optimizer) in order to train the
neural network. The attack was executed for 1000 samples, for each binary softmax output
target. Initialization of 𝑥0 was done by random sampling from the joint multivariate Gaussian
distribution (statistics computed from the same distribution as the training data, assumed to be
guessed by an attacker) for both continuous and integer-based variables. Attempts for which
the BFGS optimizer failed were discarded. We used the L-BFGS implementation from the SciPy
optimization Python library. The distance to closest neighboring training data observation is
calculated for the initialized samples and the same samples modified by the attack. Output
samples with features outside the range of the features are corrected to the min or max values.
Values of the same output samples belonging to a binary feature are rounded to zero or one.
1Kaggle 2024-12-05: https://www.kaggle.com/datasets/redwankarimsony/heart-disease-data
2UCI ML Repository 2025-05-12: https://archive.ics.uci.edu/dataset/519/heart+failure+clinical+records



Figure 2: Distance to the nearest observation in the training data for dataset B for initial sampling
(red) and after the L-BFGS-enabled attack (blue).

Table 1
Statistics for 10 runs of attacks on dataset A and B, where 𝑁𝑆𝑢𝑐𝑐𝑒𝑠𝑠 is the mean number of datapoints
generated where the distance to the nearest neighbor in the training data is decreased by the attack.

Dataset Attack? 𝑁𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝜇(𝜎)

A No N/A 0.932 (0.155)
A Yes 7 0.888 (0.147)
B No N/A 0.420 (0.027)
B Yes 64 0.365 (0.023)

3. Results

A histogram showing the distances to the nearest observation in the training data for dataset B
(filtered on the observations where the attack decreased the distance in relation to the initial
sample) can be seen in Figure 2. The histogram is computed for one of 10 runs, for full statistics
of the experiment see table 1 where 10 runs from both datasets are reported. Figure 2 shows
that the optimizer is successful moving a fraction of the initial samples towards a sample in
the training data (the blue histogram shows the decreased initial samples by moving the red
histogram to the left). It is worth mentioning that only reconstructed observations which had a
target class label matching the training data label was considered.

From Figure 2 it can be observed that the attack has a low number of successful candidates of
reconstructions (e.g. for dataset A, 123 observations, slightly over 5% of the reconstructed ob-
servations had a decreasing distance to the neighboring training data points). This is confirmed
by Table 1 showing a consistent low number of converged observations, which in turn decrease
the distance to the closest neighbors in the training data.

4. Conclusions and Future Work

Healthcare organizations are increasingly inclined to develop models using private patient data
to reinforce data-driven decision-making processes, and the importance of studying attack and
defensive strategies for privacy-preserving AI is becoming more obvious. In this paper, we



implement a black-box model inversion attack on tabular data for two datasets. Initial results
shows that black-box attacks can be performed using standard optimization algorithms to push
random samples towards data used in the training process.

Future work involves testing mitigation strategies to combat model inversion attacks. We also
work on proposing a framework for addressing model inversion vulnerabilities and contribute
to the understanding of the complex interplay between utility and security for ML applied to
tubular data. We intend to perform deeper analysis of other datasets, and new ideas of different
attacks. We aim to improve the attack loss function by considering similarity to local data
points in the training dataset (the idea comes from the 𝐾-anonymity).
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