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Abstract
This work investigates multivariate time series forecasting of ATM cash demand, with a focus on adapting
to anomalous events such as wars, pandemics, or power outages. Using real-world transaction data
from Bankomat AB, we explore modern forecasting models including Informer, FEDformer, TimesNet,
TimeXer, and the foundation model MOMENT. We also explore embedding-based clustering to further
improve forecasting results. Furthermore, we use fine-tuning and contrastive learning to adapt our
models to real-world-based anomalous conditions. This work contributes toward reliable, interpretable,
and adaptive ATM cash demand forecasting in both normal and disrupted conditions.
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1. Introduction

This thesis was done in collaboration with Bankomat, the leading company in cash manage-
ment through Automated Teller Machines (ATMs) in Sweden. One of Bankomats’ day-to-day
operations as a cash management company is to plan when to replenish ATMs. As of recently,
the owners of Bankomat (the large Banks in Sweden) want Bankomat to take the role as an
explicit knowledge center for cash.
Since the daily operations of Bankomat include managing ATM replenishment and general

management of cash, one obvious question becomes:

”What will the cash demand for a single ATM, or a network of ATMs, be in the near or
distant future? ”

This question is central to Bankomat’s operations, as it determines how and when ATMs
should be refilled. At the same time, it is also crucial from a knowledge perspective, helping to
build a more general understanding of cash demand across different time horizons. It serves as
the foundation of this study and defines the core forecasting challenge that the research aims to
address.

Under normal circumstances, Bankomat is well-equipped to manage this challenge using its
extensive domain expertise. However, external factors can significantly disrupt regular cash
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withdrawal behavior across the ATM network. Examples of such disruptions include pandemics
and geopolitical crises, with the recent invasion of Ukraine serving as a prominent case.
This leads us to the research questions that guide this thesis:

1. How can a high-performance forecasting model be developed for ATM cash
demand under normal circumstances? - To be able to create a forecasting model for
anomalous events, we first create a model for normal circumstances.

2. How can we adapt an ATM forecasting model to anomalous events with little
data? - Adapting the model to anomalous events.

Events as pandemics and wars highlight the need for forecasting models that are both reliable
and adaptable. While recent advances in deep learning, particularly transformer-based models,
have shown promising performance in time series forecasting, they are often regarded as black
boxes. This lack of interpretability can make it difficult to understand or guide their behavior
under unusual circumstances.

To address this, a promising direction explored in this report is the use of contrastive learning
as an intermediate training step. Rather than relying solely on supervised learning or anomaly
injection during fine-tuning, we introduce anomaly-augmented samples into the training process
and leverage contrastive learning and fine-tuning to guide the model. This approach incentivizes
the model to learn specific, meaningful representations in its embedding space by pulling
together normal and augmented views of the same sequence while pushing apart unrelated
samples.
By structuring the learning process in this way, the model is encouraged to develop embed-

dings that are not only robust to anomalies but also capable of distinguishing between normal
and anomalous behavior. This helps ensure that the model does not merely memorize patterns
from normal data but also generalizes to novel or irregular situations.

2. Related Works

Research on ATM cash demand forecasting has historically used statistical models and machine
learning, beginning with the NN5 competition [1], where ensemble methods incorporating
seasonality showed strong performance [2]. Later, Venkatesh et al. introduced clustering
via weekday alignment [3] and chaotic modeling techniques [4], improving SMAPE scores.
Fallahtafti et al. [5] analyzed ATM demand shifts during COVID-19, finding that simpler models
(e.g., ARIMA) outperformed complex ML models during COVID-19.

More recent time-series forecasting approaches outside cash demand forecasting increasingly
rely on transformers. Informer [6], FEDformer [7], TimesNet [8], and TimeXer [9] address
sequence length and exogenous input challenges. MOMENT [10] and TS2Vec [11] create
embeddings of time series that can be used either for forecasting, but they also provide a strong
basis for modeling ATM withdrawal behaviour.
These forecasting models offer promising alternatives for our forecasting task. However,

adapting models to anomalous events may benefit from approaches like contrastive learning.
In TS2Vec [11], the authors introduce instance and temporal contrastive losses to guide the
encoder in learning meaningful embeddings-aligning with the core idea of contrastive learning.



Building on this, [12] proposes a weighted contrastive learning framework that extends the
losses in [13]. This can help the model capture anomaly-specific deviations while preserving
the underlying structure in sequences.

3. Methodology

Themethodology consists of several stages, each contributing to the development and evaluation
of robust forecastingmodels for ATM cash demand under both normal and anomalous conditions.
The full pipeline includes data exploration, clustering, model selection, anomaly synthesis, and
training with and without contrastive learning. The following sections outline each component
in detail.

3.1. Exploratory Data Analysis (EDA)

The first stage involved extensive exploratory data analysis (EDA) to understand the temporal
dynamics and statistical properties of the ATM transaction data. This process revealed recurring
patterns across daily, weekly, and monthly cycles, as well as seasonal variations. The insights
gained from EDA informed the selection of input and output window sizes for the forecasting
models.

3.2. Discovery of Data Subgroups and Clustering Motivation

During early model prototyping, a bug in the data loader revealed the existence of distinct
geographical groups among the ATMs. Further inspection showed that while some groups
exhibited highly unique behavior, many displayed similar withdrawal patterns. This observation,
supported by findings from prior studies such as the NN5 forecasting competition, motivated
the use of clustering to group ATMs with similar dynamics.

Rather than clustering based on geographical proximity, we opted for a data-driven approach.
Specifically, we utilized embeddings generated by the MOMENT foundation model and per-
formed clustering in this latent representation space using K-Means, with cosine similarity as
the distance metric.

3.3. Benchmarking State-of-the-Art Forecasting Models

Before focusing on anomaly adaptation, we benchmarked several state-of-the-art forecasting
models, including TimeXer, TimesNet, FedFormer, Informer, and MOMENT. Based on initial per-
formance and time constraints, we selected TimesNet and TimeXer for further experimentation,
as they showed the most promising results.

3.4. Anomaly Synthesis and Adaptation

To simulate the effects of rare but impactful events, we synthesized anomalies based on the cash
demand shift observed during the Russian invasion of Ukraine. This was the only macro-level
event in the dataset that showed a clear and lasting deviation from normal behavior.



We began by forecasting the expected cash demand during the invasion period using our
trained models, then compared the predictions with the actual observed values. The resulting
residuals were used to define a mathematical formulation of the anomaly.
From this formulation, we extracted key parameters describing the anomaly’s magnitude,

steepness, and duration. These parameters were then sampled from normal distributions to
generate synthetic variants of the anomaly, which were injected into clean sequences. This
allowed us to simulate a diverse range of hypothetical macro-level events and systematically
evaluate model robustness and adaptability.
Two main training strategies were employed to adapt our forecasting models to anomalous

conditions:

1. Standard Training and Fine-Tuning: Models were either trained from scratch or
fine-tuned on datasets augmented with synthetic anomalies.

2. Contrastive Learning Framework: In this setup, the original dataset was duplicated.
One copy remained unmodified, while the other received anomaly-injected samples. The
model was then trained using a contrastive loss that encouraged the model to learn
discriminative and robust representations in its embedding space. The objective was to
pull together embeddings from clean and anomalous variants of the same sequence while
pushing apart unrelated sequences.
To achieve this, we experimented with two contrastive loss formulations inspired by
TS2Vec: instance loss, which focuses on aligning whole-sequence embeddings, and
temporal loss, which encourages alignment of corresponding time-step embeddings
across the sequences. These losses were evaluated both individually and in combination
to assess their impact on the model’s ability to represent and adapt to anomalous behavior.

This contrastive approach aimed to guide the model toward a representation space where
adaptation to anomalies is facilitated, while preserving the ability to perform well under normal
conditions.

4. Experimental Results

During initial forecasting experiments, MOMENT and TimesNet got the best SMAPE scores,
29.30% and 28.73% respectively, as displayed in Appendix A, Table 2. Examples of predicted
sequences for the initial experiment are displayed in Figures 2, 4, 3, 6, 5. However, since
MOMENT is a foundation model, its input length is not configurable. Further evaluation was
therefore done with TimesNet (best in performance) and TimeXer (third best in performance).
These were evaluated with three different input/prediction lengths, the results are displayed in
Appendix A, Table 3. Both TimesNet and TS2Vec showed promising results for both long and
short-term forecasting.
To assess whether clustering improves forecasting accuracy, TimesNet and TimeXer were

evaluated on five clusters generated using MOMENT. Performance was best in the largest
clusters, with a top SMAPE of 21.72%, while smaller clusters performed significantly worse,
suggesting data sparsity as a limiting factor. Results are shown in Appendix A, Table 4.



Figure 1: Example of an injected anomaly. This example sequence has an input length of 128 and an
output length of 64. The anomaly starts at the end of the input window and continues in the output
window. The red graph is the sequence with the injected anomaly (blue dashed graph), added to the
grey graph (the original sequence).

After having developed the forecasting models for normal circumstances, we investigated
how to adapt to anomalous circumstances.
First, to characterize the anomaly effect observed during the Russian invasion of Ukraine,

we analyzed the residuals between the model’s predictions and the actual cash demand during
that period. A non-linear regression was then applied to fit a smooth curve to these residuals,
resulting in the following parametric function used to generate synthetic anomalies:

𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑉 𝑎𝑙𝑢𝑒(𝑛) = 𝐴 ∗ 𝑛 ⋅ 𝑒−𝐵∗𝑛
𝐶

90409
(1)

Where AnomalyValue is the anomaly transaction amount for each time step (n) from the
start of the anomalous period. A, B, and C are parameters that were sampled over a normal
distribution, which was based on the A, B, and C parameter values during the invasion of Ukraine.
The created anomalous sequence was added on top of the normal data. This created anomalous
sequences with the same characteristics as the invasion of Ukraine, but with variation. (See
figure 1)

Two main adaptation methods were used to adapt the models to the injected anomalies: fine-
tuning and contrastive learning. These results are displayed in Table 1. Based on these results, a
paired t-test was conducted on the SMAPE values obtained from the five evaluation runs using
shared random seeds. The test revealed that contrastive learning significantly outperformed
fine-tuning on normal data, with a mean SMAPE reduction and a statistically significant result
(t(4) = -25.45, p < 0.001).

On anomalous data, the fine-tuning approach reached the lowest SMAPE score at 28.35%.
However, the difference in SMAPE was not statistically significant (t(4) = 1.93, p = 0.125),



Seed Contrastive Fine-Tuning
Normal Anomalous Normal Anomalous

42 28.37 31.82 31.17 34.33
0 27.81 34.66 30.78 31.04
1 29.99 32.75 32.96 29.41
2 29.49 33.54 31.99 30.30
3 27.44 32.68 30.62 28.35

Table 1
SMAPE scores (%) for TimesNet with applied Contrastive Learning (instance loss only) and Fine-Tuning
approaches across different seeds, under normal and anomalous conditions.

suggesting that the two models performed comparably under anomalous conditions across the
evaluated seeds. In comparison, the TimesNet model trained on normal data only got an SMAPE
score of 28.73% during normal circumstances and 37.91& when evaluated during anomalous
circumstances.
In conclusion, while fine-tuning improved performance on anomalous data, it resulted in

reduced accuracy under normal conditions. Contrastive learning, on the other hand, maintained
strong performance during normal circumstances and achieved substantial improvements on
anomalous data compared to models trained solely on normal data. We are currently conducting
experiments with other contrastive learning approaches to further improve the adaptation
resutls.
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Model SMAPE (%)
ARIMA 68.03
LSTM 80,30

Informer 31.51
TimesNet 28.73
FEDformer 31.58
TimeXer 29.99
Moment 29.30

Table 2
Forecasting results for daily aggregated data during daily operations with a multivariate time series.
Trained and tested on transaction data from 2023 and 2024.

Input len/Pred len TimesNet TimeXer
SMAPE (%) ME (%) SMAPE (%) ME(%)

365/14 26.86 8.98 27.59 9.92
128/64 28.73 7.99 29.99 8.29
60/30 27.51 7.88 29.28 8.61

Table 3
Forecasting results for TimesNet and TimeXer with different input/prediction lengths using daily aggre-
gated multivariate ATM transaction data. Models were trained and tested on 2023-2024 data.

Cluster TimesNet TimeXer
SMAPE (%) ME (%) SMAPE (%) ME(%)

0 21.72 7.92 21.83 8.03
1 28.86 8.92 29.09 9.27
2 46.63 15.45 44.37 16.64
3 42.13 15.56 42.05 13.61
4 28.55 10.25 28.41 9.83

All data 26.86 8.98 27.59 9.92

Table 4
Forecasting results for TimesNet and TimeXer for clustered data using multivariate daily aggregated
ATM transaction data. Cluster 0 has 297 ATMs, cluster 1 has 333 ATMs, cluster 2 has 57 ATMs, cluster 3
has 75 ATMs, and cluster 4 has 492 ATMs. The models were trained and tested on 2023-2024 data.

A. Appendix



Figure 2: Forecasting result for one sequence with an LSTM model using 128 in sequence length and
64 in prediction length. The x-axis represents each predicted time-step, and the y-axis represents the
aggregated transaction amount for one ATM over one day.

Figure 3: Forecasting result for one sequence with Informer with 128 in sequence length and 64 in
prediction length. The x-axis represents each predicted time-step, the y-axis has not yet been transformed
back to the original scale.



Figure 4: Forecasting result for one sequence with FEDformer with 128 in sequence length and 64
in prediction length. The x-axis represents each predicted time-step, the y-axis has not yet been
transformed back to the original scale.

Figure 5: Forecasting result for one sequence with TimesNet with 128 in sequence length and 64 in
prediction length. The x-axis represents each predicted time-step, the y-axis has not yet been transformed
back to the original scale.



Figure 6: Forecasting result for one sequence with TimeXer with 128 in sequence length and 64 in
prediction length. The x-axis represents each predicted time-step, the y-axis has not yet been transformed
back to the original scale.
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