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Abstract
This work presents a preliminary investigation in extending end-to-end autonomous driving systems
with temporal modeling for collaborative ultralight robotic vehicles. As part of a larger FORMAS-funded
project on human-robot collaboration, we explore integrating Long Short-Term Memory (LSTM) layers
into the classic PilotNet architecture to enhance steering stability and responsiveness in real-world
scenarios. Unlike prior work focused on simulation or large-scale driving datasets, our approach is
tested on data collected from LEVTEK Sweden AB’s ultralight robotic utility vehicles designed for
sidewalk and indoor environments. Early results show that even short-term temporal context improves
steering smoothness and reduces response lag. This initial study lays the groundwork for our ongoing
FORMAS-funded research, focusing on integrating attention mechanisms, transformer-based models,
imitation learning, and deployment in real-world collaborative environments. The long-term aim is to
develop adaptive, explainable, and human-aware autonomy for lightweight robotic vehicles.
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1. Introduction

Urban logistics, property management, and sidewalk delivery increasingly use collaborative
robots. Most commercial and academic efforts rely on modular pipelines that split the driving
task into perception, planning, and control [1]. Such designs are structured but often suffer
from error propagation, where failure in perception can cascade into planning and control. In
contrast, end-to-end learning maps sensory input directly to driving control using a single neural
network. This reduces complexity, lowers latency, reduces the need for hand-crafted outputs,
and improves robustness to distribution shifts and adversarial attacks [2, 3]. The concept began
in the 1980s with ALVINN [4], showing a neural network could learn to steer from camera
images [4]. Decades later, NVIDIA PilotNet [5] advanced it using a deep CNN to learn lane-
following from human driving data. Since then, the field has expanded to include CNNs [6],
reinforcement learning [7], and hybrid models enabling human-like driving behaviour [8].
However, early CNN-based end-to-end models rely on single-frame perception, lacking
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temporal memory. In practice, driving is a sequential task. Humans predict upcoming turns,
smooth out steering actions, and react over time. A purely feed-forward vision model may
react too late or abruptly to changes This motivates integrating a recurrent neural network,
such as a Long Short-Term Memory (LSTM), into the end-to-end model to capture temporal
context. Temporal modeling enables the system to track how the environment and the vehicle’s
state change over time by remembering information from previous frames. This approach has
been shown to perform well in diverse driving settings [9, 10], and remains widely adopted in
advanced systems such as NEAT [11] and TransFuser [12]. Recent investigations, including
ReasonNet [13], ST-P3 [14], and CIRL [15], demonstrate that memory modules greatly improves
driving performance by allowing the network to anticipate and plan rather than merely react.
This work is conducted in the real-world context of collaborative autonomy. Unlike most

self-driving systems that operate alone, we focus on ultralight robotic utility vehicles (from
LEVTEK Sweden AB) that a person can ride or walk beside, switching easily between manual
and autonomous modes. These vehicles are compact, low-speed, and designed for hybrid
indoor-outdoor operation, making them ideal for working closely with people. For instance, a
postal worker might sometimes drive the vehicle, and other times have it follow autonomously.
Such human-robot collaborative driving demands not only end-to-end autonomy, but also the
ability to follow human input and behave in a smooth, predictable way that people can trust.

This paper presents a preliminary study of a two-year FORMAS-funded project (2024-01126)
“Human-robot collaborative learning for ultralight electric utility vehicles” with LEVTEK,
PostNord, RETTA and MAU. This work extends PilotNet with an LSTM-based temporal module
and trains it on real driving data collected from LEVTEK’s prototype vehicles. The goal is to
assess if memory-enhanced end-to-endmodels improve steering smoothness and responsiveness.
The current results are limited in scope forming a foundation for the coming phases of the
project. We cover methodology and initial findings in Section 2, discuss key insights and on
current limitations in Section 3, and outline the future work and conclusion in Section 4.

2. Preliminary Work

Data Collection: Experiments use LEVTEK’s ultralight robotic utility vehicle, designed for both
indoor and outdoor use. It’s equipped with multiple cameras, lidar, and additional sensors, along
with electronic controls for steering, braking, and throttle. This works uses the forward-facing
monocular RGB camera to record several human driven sessions on a test course with indoor,
hallway like areas. The dataset has 38 training (~50k frames) and 4 testing (~2.5k frames) sessions
having time-synced frames and steering commands, covering straight paths, gentle curves, and
a few sharp turns (up to ±30°). Although the dataset is small and has limited variations by deep
learning standards, it still reflects the target environment of vehicle having low-speed, and
cluttered surrounding. All images are downsampled to 200×66 and normalized, matching the
original PilotNet setup. The low resolution keeps the model efficient and lightweight.
LSTM-Enhanced PilotNet Architecture: The PilotNet architecture is adapted to include
temporal modeling by inserting an LSTM layer after the CNN feature extractor. The network
takes a sequence of 𝑁 consecutive frames (we used 𝑁 = 5 in initial experiments) as input. Each
frame goes through the same CNN to extract visual features. These features are then passed
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to an LSTM with 512 hidden units, which helps the model remember what happened earlier,
like when a turn started. The LSTM outputs its final hidden state after the 𝑁th frame, which is
then fed to PilotNet original Fully-Connected (FC) layers to predict the steering angle. The FC
part of the network consists of a 1164-unit layer with ReLU, followed by 100 and 50-unit layers,
and a final output layer. The entire model has about 250k trainable parameters, only slightly
more than the original. Since we did not have a pretrained model for our domain, the model is
trained from scratch with randomly initialized weights .
Training: Learning is framed as a regression problem, where the network predicts a steering
angle to match the human driver using supervised imitation learning. The Huber loss (smooth
L1 loss) is employed for its greater stability compared to mean squared error, particularly due to
its robustness to outliers. To avoid overfitting, L2 regularization with a factor of 1e-3 is applied.
Training runs for 25 epochs using the Adam optimizer (learning rate 1e-4) with a batch size of
128 sequences, each with 128×𝑁 frames.

(a) PilotNet (A) (b) LSTM (A)

(c) PilotNet (B) (d) LSTM (B)

Figure 1: Steering predictions comparison of PilotNet and LSTM-enhanced PilotNet on test cases.

Figure 2: Scatter plot comparing predicted vs.
true steering angles - LSTM-enhanced PilotNet.

Evaluation and Observations: At this early
stage, the evaluation is open-loop, meaning it pre-
dicts steering on test sequences, rather than de-
ploying it to drive the vehicle autonomously yet.
We compare two versions: i) the original PilotNet,
trained on single frames, and ii) LSTM-enhanced
PilotNet , trained on 5-frame sequences.

The Figure 1 compares steering predictions from
PilotNet and the LSTM-enhanced PilotNet across
two test scenarios. In both (A) and (B), the LSTM
model (right) tracks true steering angles (green
line) more closely than PilotNet (left), especially
around sharp turns and transitions. The LSTM reduces delay and overshooting, leading to
smoother, more stable control, showing the benefit of adding temporal memory. In Figure 2,



the predicted steering angles of LSTM-enhanced PilotNet are compared with true values. Each
blue dot is one prediction. The closer it is to the red line, the more accurate it is. Most points
cluster near the red line. There is some scatter at higher angles, but overall the predictions
follow true steering behavior. The model overall performs well, with strong Pearson correlation
(r = 0.95) and R² score of 0.89, indicating it explains most variation in human steering. The
average error remains low on straight roads (MAE ≈ 1.65°–2.28°), while mild turns show slightly
higher error (MAE ≈ 3.86°–4.57°), indicating occasional under/over-correction. Interestingly,
sharp turns (MAE ≈ 2.79°–3.61°) are handled better than mild ones, suggesting the model detects
turning intent, though fine control may still need improvement. These results demonstrate
strong early-stage performance and highlight opportunities for further improvement.

3. Limitations and Insights

As this preliminary study is based on a few months of work, it has several limitations. So far, all
evaluations have been conducted offline. The LSTM-enhanced model has not yet been deployed
on the vehicle for real-time driving. Consequently this study lacks insight about how the model
handles situations where small errors build up or whether it might cause unstable steering
behavior when in full control. The training dataset is relatively small and biased, collected by a
single driver on a fixed route. The performance of the model in unfamiliar situations remains
untested. It is suspected that the model may have learned false correlations from the limited
data. For example, associating a particular wall color with turn, due to repeating patterns in
the training data. Despite using regularization techniques that gained reasonable performance
on test data, the risk of overfitting remains. True generalization will only be assessed on more
diverse routes. Another limitation is that the current end-to-end model has no explicit notion
of obstacles or pedestrians. It is trained only to mimic steering within a mostly clear path,
and does not produce outputs for braking or obstacle avoidance. PilotNet by design has no
direct output for braking or obstacle detection. Although the LSTM helps reduce delay between
perception and action, some physical lags remains when the actual vehicle actually moves. This
highlights that simply learning the mapping from image to steering may not be enough if the
vehicle has significant inertia or delay. A better approach could involve predictive control or
feeding in extra information like the current speed to help the model predict future actions.

4. Future Directions and Conclusion

In conclusion, this early work shows that adding LSTM-based temporal modeling to an end-to-
end driving model leads to smoother and more responsive control using real ultralight vehicle
data. Future work will focus on enhancing performance and transparency through attention
mechanisms, Transformer-based architectures for long-term memory, and using tools like
saliency maps. A key direction is developmenting interactive learning, where human feedback
actively shapes the model during training and deployment. This support the broader goal of
building an autonomous system grounded in human-in-the-loop machine learning for adaptive,
real-time human–machine collaboration. Expanding real-world testing and ongoing partnership
between LEVTEK, are essential to bringing these advances to actual vehicle deployment.
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