
Robust People Counting in Public Spaces Using
Overhead Cameras: Addressing Challenges of Rapid
Movement, Headwear, and Bidirectional Flow
Anderson Tavares1, Maycel Isaac2, Jens Lundström3 and Stefan Byttner4

Abstract
This work describes how datasets with specific people behavior, for example, movement speed and
grouping, affect training and testing performances, which influences the overall model accuracy. By
splitting the dataset based on how fast people move or how dense they are, we realize that datasets
with fast-paced people do not generalize well. However, surprisingly, generalization from training in
clustered people is even worse. This shows that, when lacking data, focusing on slow movement and
isolated objects gives more information for the network to generalize.

Keywords
People counting, Object detection, Deep learning, Object tracking

1. Introduction

Accurate counting of people in public spaces using overhead cameras is crucial for applications
such as crowd management, resource allocation, and security. However, various challenges,
such as rapid movement, headwear occlusions, and bidirectional flow, can affect the precision of
counting systems. Recent advances have focused on addressing these issues through innovative
hardware and sophisticated algorithms.

Tracking and counting people has been done historically both with traditional image pro-
cessing methods and more recent deep learning methods, or hybrid methods. As an example,
in [1], a system is presented that tracks individuals by monitoring their heads and shoulders
in complex environments. It addresses challenges such as occlusions and varying movement
patterns by employing a combination of Hough Circular Gradient Transform for head detection
and Histogram of Oriented Gradients (HOG) [2] based symmetry methods for shoulder detec-
tion. People tracking is done through deep learning, and counting of people is done through
cross-line judgement as they are tracked.

This work analyzes how training on specific behavior affects training and testing, which
affects tracking and counting.

SAIS2025: Swedish AI Society Workshop 2025, 16-17 June 2025, Halmstad, Sweden.
*Corresponding author.
†
These authors contributed equally.
$ anderson@synteda.com (A. Tavares); maycel@synteda.com (M. Isaac); jens.lundstrom@hh.se (J. Lundström);
stefan.byttner@hh.se (S. Byttner)
� https://www.synteda.com/ (A. Tavares); https://www.synteda.com/ (M. Isaac); https://www.hh.se/
(J. Lundström); https://www.hh.se/ (S. Byttner)
� 0000-0002-8739-6479 (A. Tavares); 0000-0001-8804-5884 (J. Lundström); 0000-0002-0293-040X (S. Byttner)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:anderson@synteda.com
mailto:maycel@synteda.com
mailto:jens.lundstrom@hh.se
mailto:stefan.byttner@hh.se
https://www.synteda.com/
https://www.synteda.com/
https://www.hh.se/
https://www.hh.se/
https://orcid.org/0000-0002-8739-6479
https://orcid.org/0000-0001-8804-5884
https://orcid.org/0000-0002-0293-040X
https://creativecommons.org/licenses/by/4.0


2. Literature review

There is an extensive list of works on detecting and tracking people from overhead camera
images. Ahamed et al. [3] develop a people counter. The software was executed on an Intel NUC
12 Pro Mini PC, without GPU. Even though they replaced a line by a region when counting, the
uncertainty generated by the process and the measurement system (image grabbing + detection)
is not taken into account.

Konrad et al. [4] introduce a people counter which uses the RAPID model for fish eye cameras.
However, there is no work that analyzes the performance of RAPID with embedded devices.

Serrano-Cuerda et al. [5] shows a handmade people counter using image processing and
morphological operations. It suffers from the limitations of image processing solutions: mor-
phological operations will not account for scene variations like lighting. Also, the blob detector
does not work with people with an appearance (e.g. clothing) similar to the ground. Since it is
not a learnable model, it will not work with different camera setups (e.g. different heights and
orientations) without manual reparametrization.

3. Methodology

The system can be divided into four main parts, illustrated in Figure 1.

Detection Matching Tracking Counting

Figure 1: Main steps of the people counter

For custom model training, dataset collection and annotation are important steps. Annotations
were made in our in-house annotation tool. Figure 2 shows a screenshot of it.

3.1. Detection

Detection means finding the location of instances of a specific class within an input source, for
example, a camera video frame [6, 7]. This location may also be accompanied by additional
parameters, such as the region of interest, also called the bounding box. Deep learning-based
works usually make a distinction between object detection (finding bounding boxes) and instance
segmentation (finding the actual subset of pixels that belongs to the instance).

Solutions for the object detection problem make extensive use of methods from areas such as
Image and Signal processing, Computer Vision, and Machine Learning, with special attention
to the increasing demand for deep learning. Our work gives special attention to models that are
designed for accuracy, small size, speed, and low power consumption. A popular model that we
choose for this analysis is MobileNet V3 [8] with SSD Lite [9].

In this work, the detector receives an image 𝐼 : Z𝑑 → Z𝑐, where 𝑑 is the coordinate
space dimension and 𝑐 is the number of channels, and outputs a list of bounding boxes {d𝑖}
called detections. There are different representations for a box, like two opposing corners or
a center/size. Some tasks may also require box orientation. Usually multiple detections may
occur for a single target, leading to post-processing tasks such as non-max suppression.



Figure 2: In-house web-based video annotation tool used during dataset annotation.

3.2. Matching

We apply Kuhn–Munkres (or Hungarian matching) algorithm [10] to match the detections {d𝑖}
with previously detected people, or tracks t𝑗 , which outputs:

• The pairs (d𝑖, t𝑗) where detection d𝑖 matches track t𝑗 ;
• The list {d𝑖} of detections without assigned track, i.e., potentially new people.
• The list {t𝑗} of tracks without detections, e.g., lost people.

3.3. Tracking

Tracking, in the context of video, is the process of associating target objects, a.k.a tracks t𝑗 ,
across different frames. The real states of those tracks are unknown. The goal is to estimate the
state based on the input source and the intermediate results, for example the detections d𝑖.

Kalman Filter [11] is a popular method which uses a series of noisy measurements (detections
d𝑖) observed over time to estimate the unknown state of the target object. Its basic form works
with linear systems, where variations like Extended Kalman Filter (EKF) and Unscented Kalman
Filter (UKF) are designed for non-linear systems [11].

3.4. Counting

We define a line to count how many tracks traverse it, in Hessian normal form: l = [𝑙1, 𝑙2,−𝛿],
where ⟨l,p⟩ = 0,∀p ∈ ℒ (ℒ is the trace of the line), [𝑙1, 𝑙2] is the normal vector of the line,
and 𝛿 is the orthogonal distance from the line to the origin. Since l is homogeneous, l and 𝛼l
(𝛼 ̸= 0) represent the same line. The line normalization[12] of 𝛼l = v = [𝑣1, 𝑣2, 𝑣3] recovers l:

l = v
−sign(𝑣3)
‖v:2‖

, where v𝑖:𝑗 = [𝑣𝑖, 𝑣𝑖+1, . . . , 𝑣𝑗 ] and v:𝑗 = v1:𝑗 .

An easy way to find the line that passes over two homogeneous points (p1,p2) is l = p1 × p2,
that is, the cross product between them. For any homogeneous point p, the signed distance of
the point to the line l is their dot product: 𝛿p = ⟨p, l⟩.

Assuming that we choose the center ct of the track t, for two subsequent frames, we can
check whether ct crosses l by verifying if its distance sign⟨ct, l⟩ changes sign.



4. Results

4.1. Based on people speed

We compared training sessions based on speed (fast and normal). Figure 3 (left) shows two
training sessions when training and testing in the same speed category (but different data set
splits). Figure 3 (right) shows the training sessions when choosing different speeds for training
and validation. We see that a dataset with walking speed conveys more information than one
with running speed.

Table 1
Validation Loss (based on speed)

training
normal fast

classif. regres. total clasif. regres. total

test
fast 2.57 2.327 4.897 2.312 1.559 3.871

normal 2.479 2.344 4.823 2.367 1.453 3.82

0 20 40 60 80 100

10

20

30

Epochs

Lo
ss

Train normal - test normal
Train fast - test fast

0 20 40 60 80 100

10

20

30

Epochs

Train normal - test fast
Train fast - test normal

Figure 3: Validation loss: training and testing on same speed (left) or different ones (right).

4.2. Based on people clustering

We also investigated the performance of the model when we split the dataset based on how
clustered the people are. We split the database based on the distance of the bounding box center
to the closest neighbor. We set a threshold for this split. Table 2 shows the validation loss.

Table 2
Validation Loss (based on people clustering)

training
alone grouped

classif. regres. total clasif. regres. total

test
alone 2.299 1.498 3.797 7.281 3.795 11.08

grouped 2.472 2.139 4.611 2.362 1.764 4.186

Even though we have a low validation loss when training on clustered bounding boxes when
testing also on clustered ones, the results show a poor generalization behavior when testing
against other types of datasets.



5. Conclusion

In this work, we showed in this work that generalization of the model is affected by how the
training dataset represents the characteristics of the people. We analyze how fast speed and
grouped instances might affect the accuracy of inference in slow and individual instances.

References

[1] M. Gochoo, S. A. Rizwan, Y. Y. Ghadi, A. Jalal, K. Kim, A systematic deep learning based
overhead tracking and counting system using rgb-d remote cameras, Applied Sciences
2021, Vol. 11, Page 5503 11 (2021) 5503. doi:10.3390/APP11125503.

[2] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, Proceedings -
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
CVPR 2005 I (2005) 886–893. doi:10.1109/CVPR.2005.177.

[3] I. Ahamed, C. D. Ranathunga, D. S. Udayantha, B. K. K. Ng, C. Yuen, Real-time ai-driven
people tracking and counting using overhead cameras (2024). URL: http://arxiv.org/abs/
2411.10072. doi:10.48550/arXiv.2411.10072.

[4] J. Konrad, M. Cokbas, P. Ishwar, T. D. Little, M. Gevelber, High-accuracy people counting
in large spaces using overhead fisheye cameras, Energy and Buildings 307 (2024) 113936.
doi:10.1016/j.enbuild.2024.113936.

[5] J. Serrano-Cuerda, J. C. Castillo, A. Fernández-Caballero, Indoor overhead video camera for
efficient people counting, Jurnal Teknologi 63 (2013) 17–22. doi:10.11113/jt.v63.1948.

[6] R. Hartley, A. Zisserman, Multiple view geometry in computer vision (cited by: 11343),
Cambridge University Press 2 (2004) 672. URL: http://www.robots.ox.ac.uk/~vgg/hzbook/.

[7] A. C. Heaton Jeff Ian Goodfellow, Yoshua Bengio, Deep learning, Genetic Programming
and Evolvable Machines 19 (2018) 305–307.

[8] A. Howard, M. Sandler, B. Chen, W. Wang, L. C. Chen, M. Tan, G. Chu, V. Vasudevan,
Y. Zhu, R. Pang, Q. Le, H. Adam, Searching for mobilenetv3, Proceedings of the IEEE
International Conference on Computer Vision 2019-October (2019) 1314–1324. URL: https:
//arxiv.org/abs/1905.02244v5. doi:10.1109/ICCV.2019.00140.

[9] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A. C. Berg, Ssd: Single
shot multibox detector, Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9905 LNCS (2015)
21–37. URL: http://arxiv.org/abs/1512.02325http://dx.doi.org/10.1007/978-3-319-46448-0_2.
doi:10.1007/978-3-319-46448-0_2.

[10] H. W. Kuhn, The hungarian method for the assignment problem, Naval Research Logistics
Quarterly 2 (1955) 83–97. doi:10.1002/NAV.3800020109.

[11] K. P. Murphy, Probabilistic machine learning : advanced topics, The MIT Press, 2023.
[12] W. Förstner, B. P. Wrobel, Photogrammetric Computer Vision, volume 11, Springer In-

ternational Publishing, 2016. URL: http://link.springer.com/10.1007/978-3-319-11550-4.
doi:10.1007/978-3-319-11550-4.

http://dx.doi.org/10.3390/APP11125503
http://dx.doi.org/10.1109/CVPR.2005.177
http://arxiv.org/abs/2411.10072
http://arxiv.org/abs/2411.10072
http://dx.doi.org/10.48550/arXiv.2411.10072
http://dx.doi.org/10.1016/j.enbuild.2024.113936
http://dx.doi.org/10.11113/jt.v63.1948
http://www.robots.ox.ac.uk/~vgg/hzbook/
https://arxiv.org/abs/1905.02244v5
https://arxiv.org/abs/1905.02244v5
http://dx.doi.org/10.1109/ICCV.2019.00140
http://arxiv.org/abs/1512.02325 http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1002/NAV.3800020109
http://link.springer.com/10.1007/978-3-319-11550-4
http://dx.doi.org/10.1007/978-3-319-11550-4

	1 Introduction
	2 Literature review
	3 Methodology
	3.1 Detection
	3.2 Matching
	3.3 Tracking
	3.4 Counting

	4 Results
	4.1 Based on people speed
	4.2 Based on people clustering

	5 Conclusion

