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Abstract
Recent research in Human-Robot Interaction (HRI) has increasingly focused on understanding user
engagement to enhance the overall user experience. This paper aims to develop a predictive model of
user engagement within a triadic interaction loop involving three key entities: a human, a robot, and
a task. To achieve this, we created a new dataset incorporating multimodal features, including facial
landmarks, facial action units, head posture, and gaze. Engagement annotations were performed by
two human annotators using a structured approach to ensure high-quality labeling. Building upon
this dataset, we developed a deep learning-based predictive model of user engagement. The results
demonstrate that the model effectively captures user engagement in the task-oriented HRI scenario,
achieving a Mean Squared Error (MSE) of 0.0111 and an R² score of 0.8195, highlighting its accuracy
and robustness. Additionally, a permutation feature importance analysis revealed that gaze, head pose,
and facial expressions significantly contributed to the model’s predictions across various levels of user
engagement.
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1. Introduction

The study of engagement has emerged as a response to the desire to create services, products,
and content that are tailored to user experience in order to engage users [1]. In the field of
Human-Robot Interaction (HRI), engagement is a multifaceted concept with diverse definitions
in the literature [1]. Due to the diverse ways engagement is understood in the HRI field,
researchers have employed a wide range of metrics and features to measure it [1, 43]. In this
paper, we define ‘engagement’ as:

a quality of user experiences with technology that is characterized by challenge,
aesthetic and sensory appeal, feedback, novelty, interactivity, perceived control
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and time, awareness, motivation, interest, and affect ([11], p. 949).

One prominent area where engagement plays a critical role is Socially Assistive Robots
(SARs), which have been increasingly deployed in fields such as education and healthcare. For
instance, [2] developed two Machine Learning (ML) models to monitor long-term engagement
with SARs, particularly for children with autism spectrum disorder. By utilizing audio-visual
and performance data, they trained several ML algorithms and implemented re-engagement
strategies when engagement levels dropped below a certain threshold. Similarly, [3] proposed
an assistive robot designed to support Alzheimer’s patients through memory training exercises,
leveraging verbal and nonverbal communication to sustain user engagement. They identified
four distinct levels of engagement that robots must adapt to based on user performance, ensuring
a dynamic and responsive interaction.

Various Machine Learning and Deep Learning models have been applied to different datasets
to improve accuracy and adaptability in engagement detection [39]. For instance, [17] used
the UE-HRI dataset to develop a 3D Convolutional Neural Network (CNN) model that detects
engagement based on video frame sequences. Similarly, [18] built a CNN model to identify
passive subjects in a four-way HRI interaction using facial and speech data. Other studies have
explored alternative approaches. For example, [19] utilized a Long Short-Term Memory (LSTM)
model on visual data, body pose, and facial features to detect disengagement in children with
learning difficulties, while [20] applied a Recurrent Neural Network (RNN) to model engagement
using behavioral and speech data from the UE-HRI dataset. Expanding on these methods,
[2] compared different ML algorithms for engagement detection based on facial, audio, and
game performance features. [2] evaluated several conventional model types, including Naïve
Bayes, K-nearest neighbors, support vector machines, neural networks, logistic regression,
random decision tree forests, and gradient-boosted decision trees. Among these, gradient-
boosted decision trees emerged as the most successful, achieving the highest Area Under the
Receiver Operating Characteristic (AUROC) values. Further, [15] implemented a multimodal
active learning approach with Reinforcement Learning (RL) and LSTMs to detect child-robot
engagement, while [21] trained CNN and LSTM models to classify different engagement levels
in interactions with the TEGA robot. Other works focused on personalization and multimodal
engagement detection. [22] introduced CultureNet, a CNN-based model for personalized
engagement detection, while [24] combined CNN models for facial expression and body posture
analysis to classify engagement into positive, negative, and neutral categories. Additionally,
[9] trained an RNN model on the EASE dataset, incorporating videos, audio, and physiological
signals, using facial action units as input features. Finally, [25] developed a Multi-Task Cascaded
Convolutional Neural Networks (MTCNN) model using facial landmarks and Histogram of
Oriented Gradients (HOG) features to detect engagement states in children.

However, these models necessitate substantial amounts of training data, and there are only
a limited number of existing engagement datasets. Several datasets have been used in HRI
for engagement detection [39]. One well-known dataset is the UE-HRI dataset [4, 5], which
was collected from human interactions with the Pepper robot in a public space. This dataset
includes video, voice, sonar, and laser data, with engagement annotations primarily focused
on cues related to disengagement. A notable limitation of the UE-HRI dataset is that it focuses
solely on the binary presence or absence of disengagement, without capturing the full spectrum



or intensity of user engagement and emotional states. This limitation could hinder the model’s
ability to perceive more nuanced engagement levels during interactions.

Another significant dataset is the TOGURO dataset, gathered from human interactions with
the NAO robot in public settings [6, 7]. It contains video streams, as well as verbal and non-
verbal user behaviors, along with user position data. In addition to these engagement-specific
datasets, several emotion-based datasets are commonly used in research, including the Static
Facial Expressions in the Wild (SFEW), Facial Expression Recognition (FER2013), and AffectNet
[39]. However, these datasets rely heavily on facial expressions to detect affective engagement
and overlook other significant indicators of user engagement, such as pose and gaze.

Due to the subjective and context-dependent nature of engagement, annotating engagement
is both time-consuming and challenging. While engagement annotation is typically performed
manually, alternative approaches have been explored. For instance, [9] combined self-reports
with expert annotations to establish ground truth, whereas [10] employed unsupervisedmethods
to categorize engagement into four patterns: approaching, interacting, leaving, and uninterested.
Following the establishment of this structured engagement dataset, a deep neural network
model was trained to detect user engagement.

In this paper, we introduce an engagement dataset and engagement predictive model within
a triadic human-robot-task interaction. We constructed a dataset and implemented a rigorous
engagement annotation methodology to guarantee high-quality data labeling. The annotation
was informed by insights gained from data collection in [53], where observing patterns of
user behavior in interaction videos illuminated the correlations between various indicators
(such as facial expressions and gaze behavior) and engagement levels. The developed dataset
incorporates a variety of multimodal features, including facial landmarks, head pose, and gaze
direction.

The following sections will detail the proposed general HRI setup, engagement annotation,
and modeling methodology.

2. HRI Framework

This study aims to assess human engagement in a triadic HRI setup by introducing an engage-
ment annotation framework and developing an engagement predictive model. This model
can potentially be used to enhance user experience by re-engaging users or increasing user
engagement via social and instructional feedback from the robot or by dynamically adjusting
task difficulty. Various gamification elements can be integrated into the setup, allowing users to
engage with the task through rewards and audiovisual feedback from both the robot and the task
itself [16]. The feasibility of implementing such a function depends on real-time engagement
assessment.

The interaction loop, as presented in [16], consists of six components:

1. Challenge Modulation: Adjusting the task’s difficulty based on the user’s engagement
state. If disengagement arises due to excessive difficulty, reducing the challenge can help
re-engage the user. Conversely, if the task is too easy, increasing its difficulty may enhance
engagement by offering a more stimulating experience. According to Flow theory, an



individual can experience a state of deep satisfaction and immersion when there is an
optimal balance between the task’s challenge and their skill level [32].

2. Task State: This component involves providing information on human performance
considering the current state of the task. It functions as a gamification element, tracking
and displaying user progress and achievements, which canmotivate sustained engagement
and improvement [30, 31, 16].

3. Action Selection: This component involves the use of touchscreen-based, verbal, or
mouse inputs for selecting actions. Providing users with hints, tips, or instructions as a
gamification element can result in higher engagement and improve users’ performance
[16, 41, 40].

4. Reward Feedback: The task provides direct feedback on the outcome of a specific action
taken by the user. This module is considered as a within-task gamification element in an
HRI setup [39].

5. Social Feedback: This component includes the robot’s verbal/nonverbal feedback to
encourage desired behaviors and acknowledge accomplishments [33, 34, 35, 36]. An
engagement assessment model can assist in determining appropriate robot responses.
Performance-based feedback may be particularly beneficial for tasks focused on achieve-
ment, such as cognitive training or educational activities. Conversely, in scenarios where
fostering social connections is essential, such as companionship or social skills devel-
opment, emphasizing affective-based feedback can enhance user engagement with the
robot.

6. Engagement State: This component refers to possible inputs that can help determine
the user’s emotional state or level of engagement. These features may include facial
expressions, physiological signals (e.g., EEG, GSR, ECG), eye-tracking data, and body
movements captured by Kinect sensors.

To effectively engage users, feedback and task difficulty adjustments must be adapted to
the user’s engagement state, estimated using an engagement estimation model. The literature
presents various adaptive strategies based on engagement, such as rule-based systems that
adjust according to user engagement levels [38, 23, 37], and Reinforcement Learning (RL)-based
policy learners, enabling more tailored adaptations for user engagement [6, 2, 39].

Research Questions

1. How canwe effectively quantify users’ task engagement in a triadic HRI scenario involving
task-oriented interactions?

2. What multimodal features (e.g., Facial Action Units (FAUs), head postures, and gaze
directions) contribute to the assessment of user engagement?

3. Methodology

Fig. 1 presents the HRI setup designed for data collection, as originally introduced in [53]. The
dataset consists of video recordings capturing user interactionswith a social robot, Furhat, during



Figure 1: Interaction Loop: The user, robot (Furhat), and the gamified task are three key entities of the
proposed setup. The user can select an action and receive audio-visual feedback from both the task and
the robot [53].

a memory training task. The robot is positioned at an angled distance from both the user and the
screen. Each interaction lasts approximately 10–15 minutes, during which the robot provides
feedback aligned with the task’s outcome. Additionally, the robot establishes eye contact with
the user after delivering feedback in response to the user’s actions. Fifty-eight engineering
students (35 males, 23 females) from Koç University’s Electrical and Electronics Engineering
and Computer Engineering departments, aged 18 to 24 (M = 20, SD = 1.87), participated in the
data collection.

3.1. Engagement Annotation

In this setup, user task engagement can be defined through indicators, such as head and gaze
orientations, as well as facial expressions. A user’s head or gaze orientation serves as an
indicator of attention and engagement. When a user shifts their head or gaze away from the
screen, it suggests a decline in engagement. However, even when users maintain their gaze on
the screen, their level of engagement may vary between positive, negative, or neutral states.
Through qualitative analysis of the video data, seven distinct levels of user engagement were
established, which are categorized as follows:

• Level 1: Completely disengaged (looking away from the screen).
• Level 2: Occasional glances at the screen, lacking sustained focus.
• Level 3: User maintains attention on the screen but exhibits signs of distraction.
• Level 4: User maintains a steady focus on the screen while showing negative expressions
(e.g., frustration or disinterest).

• Level 5: User maintains a steady focus on the screen and shows neutral expressions
(neither positive nor negative).

• Level 6: User maintains a steady focus on the screen and shows positive expressions
(e.g., happiness or interest).

• Level 7: User maintains a steady focus on the screen and is highly engaged (displaying
strong positive emotions).



Figure 2: Annotation process: Videos are split into sub-clips, which are then categorized by engagement
levels. Finally, engagement levels are refined and normalized to a 0-1 scale.

Fig. 2 illustrates a flowchart of the annotation process. The participants’ videos were
segmented into sub-video clips based on similar engagement patterns, which were assessed
manually by a researcher. The researcher evaluated similarity by observing behavioral cues such
as facial expressions, body language, gaze direction, and vocal tone, identifying segments that
reflected consistent levels or patterns of engagement. This segmentation facilitates a detailed
temporal analysis of user engagement by capturing variations in attention and affective states
throughout the interaction. While this method may introduce a certain degree of noise or
inaccuracies, given the impracticality of labeling every video frame, it enables the extraction of
meaningful insights from the temporal patterns.

Two researchers conducted the labeling independently. Firstly, they conducted an initial
round of annotation in which they sorted out the segmented video clips of each participant
into one of the seven predefined engagement levels. This initial labeling process is essential
for establishing reliable baseline engagement data. After initial labeling, clips within each
engagement level were further sorted out into three subcategories to increase annotation
granularity. The subcategories established within each engagement level were designed to
represent different degrees of engagement, essentially dividing the levels into three further
gradations, ranging from low to high within that engagement category. This approach allows
for a more nuanced understanding of user engagement by capturing subtle variations in user
behavior and emotional responses. To ensure robustness, annotators reviewed and compared
engagement sub-categories across all levels and resorted clips if necessary.

Each annotator labeled 233 video clips, featuring interactions from 58 different participants.
To assess inter-rater reliability, we calculated a weighted Cohen’s Kappa coefficient [42, 44], a
statistical measure that accounts for both agreement and the likelihood of chance agreement.
Given that the annotation labels are ordinal, implying a meaningful order among categories,
the standard Cohen’s Kappa is not ideal, as it treats all disagreements equally. Instead, we apply



quadratic weighting, which penalizes larger disagreements more heavily than minor ones. This
ensures that a disagreement between adjacent categories (e.g., 3 vs. 4) is considered less severe
than one between distant categories (e.g., 1 vs. 5). By using weighted Kappa, we obtain a more
accurate measure of inter-rater agreement that properly reflects the structure of our data. The
final labels were determined by averaging the annotators’ ratings.

3.2. Engagement Modeling

Engagement labels for model training were generated by averaging the scores provided by the
two annotators. These averaged values were then normalized to a continuous scale ranging from
0 (indicating complete disengagement) to 1 (indicating high engagement). To extract relevant
behavioral features, we used the OpenFace toolkit [12], which provides a comprehensive set of
facial and gaze-related data. Specifically, features extracted include facial landmarks (2D and
3D), head pose, eye gaze, and Facial Action Units (FAUs).

The resulting dataset comprised 704 features categorized into several groups: gaze data (8),
eye landmarks (168), 3D head pose (6), 2D facial landmarks (136), 3D facial landmarks (204),
head pose model parameters (6), Point Distribution Model (PDM) parameters (34), FAUs (35),
3D landmark Z-coordinates (𝑍0 to 𝑍67), and 39 AU-related parameters. The complete dataset is
publicly available at https://osf.io/4nfwh. All feature values were standardized prior to training
to ensure uniformity across scales.

The predictive model was developed using a deep learning architecture implemented in
TensorFlow and Keras. It consists of fully connected layers utilizing ReLU activation functions
and dropout regularization to mitigate overfitting. The model architecture is summarized in Fig.
3. Since the target variable represents a probability of user engagement, a sigmoid activation
function is used in the output layer to ensure predictions remain within the [0, 1] range.

Figure 3: Model architecture summary

To evaluate model performance, the dataset was partitioned into training (80%) and testing
(20%) subsets. To maintain a balanced representation of engagement levels and participant
data, training samples were randomly selected across participants and engagement levels. This
strategy helps to prevent bias due to over-representation of specific cases and promotes gener-
alizability. To further enhance model robustness and increase data variability, we employed
data augmentation by generating vertically mirrored versions of the video clips. These aug-
mented clips were assigned the same engagement labels as their original counterparts. Model
optimization was performed using the Adam optimizer with Mean Squared Error (MSE) as the
loss function.

https://osf.io/4nfwh


4. Results

The inter-rater agreement analysis yielded a weighted Cohen’s Kappa of 0.91, indicating a high
level of agreement between the annotators. The predictive model’s performance was evaluated
using Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error
(RMSE). Table 1 summarizes the final evaluation outcomes for the model. To better understand
performance variations across engagement levels, we evaluated the model separately on test
subsets corresponding to each engagement level. This allowed us to assess how well the model
generalizes across different engagement levels, despite being trained holistically. Fig. 4 displays
the loss curves corresponding to four batch sizes (30, 40, 50, and 60), illustrating the model’s
fine-tuning process. The batch size of around 40 yields the most stable performance, suggesting
it is well-suited to the dataset’s characteristics and the labeling approach used.
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Figure 4: Comparison of MSE per epoch for batch sizes: 30, 40, 50 and 60

Engagement Level MSE MAE RMSE R2

1 0.0039 0.0361 0.0627 -
2 0.0781 0.2410 0.2794 -
3 0.1211 0.3335 0.3480 -
4 0.0222 0.1220 0.1489 -
5 0.0036 0.0463 0.0601 -
6 0.0042 0.0409 0.0648 -
7 0.0458 0.2111 0.2139 -

Total 0.0111 0.0696 0.1054 0.8195

Table 1
Evaluation metrics by engagement levels



The model achieved an MSE of 0.0111, indicating low squared error on average across
predictions. The MAE was 0.0696, suggesting an average absolute deviation of approximately
6.96%. Notably, the R² score of 0.8195 indicates that the model accounts for 81.95% of the variance
in engagement values, demonstrating strong predictive performance. These results suggest that
the model effectively captures the underlying engagement patterns. However, performance
was comparatively lower for engagement levels 2, 3, and 7, likely due to the limited amount of
training data available for these categories.

To better understand the relationship between the specific features of engagement and the
model prediction of engagement level, a feature importance analysis was conducted. Table 2
presents the most influential features ranked by their permutation importance values, derived
from the trained model based on MSE as a performance metric. Permutation importance
measures the decrease in a model’s performance when the values of a single feature are randomly
shuffled. A higher value indicates a greater contribution of the feature to the model’s predictions
[47]. These values were calculated using the trained model, with MSE as the evaluation metric.
Notably, a negative permutation importance suggests that scrambling the feature improves
model performance, potentially indicating overfitting, where the model relies on misleading
patterns not generalizable to new data. For each engagement level, the six most important
features are listed. This table provides a more detailed analysis of how the trained model
differentiates between engagement levels. Fig. 5 presents selected frames from a video in the
dataset, showing a participant interacting with both the task and the robot. Each frame includes
the predicted engagement value. Lower predicted values correspond to lower engagement
levels, as detailed in Table 2. For instance, frame 3 has a predicted engagement score of 0.61
and is associated with facial expressions such as smiling and raised cheeks.

Figure 5: Several frames from a video in the dataset recorded from the interaction of a participant with
the task and the robot. Facial regions have been blurred for anonymization. The green plot illustrates
engagement value changes over the sequence frames.



Engagement Level Top Features (Feature = Importance)

Level 7
p_23 = 0.000486, AU23_r = 0.000286,
p_29= 0.000157, AU15_c = 0.000137,
AU20_c = 0.000130, AU23_c = 0.000111

Level 6
AU10_c = 0.000387, AU12_c = 0.000239,
AU12_r = 0.000201, p_0 = 0.000103,
AU04_r = 0.000089, p_30 = 0.000085

Level 5
p_18 = 0.000113, AU07_c = 0.000091,
p_16 = 0.000085, AU09_c = 0.000084,
X_3 = 0.000078, X_0 = 0.000076

Level 4
p_19 = 0.000698, p_17 = 0.000637,
p_4 = 0.000478, p_18 = 0.000379,
pose_Rz = 0.000354, p_rz = 0.000344

Level 3
gaze_0_x = 0.003535, gaze_angle_x = 0.003366,
gaze_1_x = 0.003304, pose_Ry = 0.003282,
p_ry = 0.002919, p_1 = 0.002722

Level 2
gaze_angle_x = 0.032542, gaze_1_x = 0.032406,
gaze_0_x = 0.029830, pose_Ry = 0.019259,
p_ry = 0.016968, p_1 = 0.010558

Level 1
gaze_angle_x = 0.007903, gaze_0_x = 0.007356,
gaze_1_x = 0.006444, pose_Ry = 0.003462,
p_1 = 0.002450, p_ry = 0.002113

Total
gaze_angle_x = 0.001091, gaze_0_x = 0.001091,
gaze_1_x = 0.000949, pose_Ry = 0.000560,
p_ry = 0.000381, p_1 = 0.000340

Table 2
Top features for each engagement level

• Gaze and pose features ranked highest in importance in engagement levels 1, 2, and
3, indicating that gaze direction, orientation, and pose are highly informative for the
prediction task in these levels. Gaze and body orientation are often key signals in assessing
engagement and attention [50, 51, 5].

• Facial Action Units show higher importance in levels 5, 6, and 7, suggesting that expres-
sions play a significant role in the model’s decision-making process in these levels. In the
literature, facial expressions like smiles and raised cheeks are associated with positive
emotions [23, 24].

• Facial landmark features, while less dominant individually, still contributed meaningfully.
While facial landmarks are not the most influential on their own, they could still play a
key role when considered in conjunction with other features, as discussed in studies on
the integration of multiple engagement cues [39, 52].

5. Conclusion

This study presents a predictive model for assessing user engagement in a triadic human-robot
interaction setup, consisting of a human, a robot, and a task. The model is built using a novel



dataset that we developed, incorporating multimodal features such as facial landmarks, facial
action units, head pose, and gaze direction. Additionally, we introduce a structured framework
for annotating engagement, addressing a significant gap in existing research on systematic
engagement annotation in the HRI scenario.

Engagement annotations were carried out using a structured approach, resulting in a weighted
Cohen’s Kappa score of 0.91, reflecting a high level of agreement among the annotators. The
predictive model showed excellent performance, with a Mean Squared Error (MSE) of 0.0111
and an R² score of 0.8195. These results demonstrate the model’s ability to accurately capture
user engagement patterns, suggesting its potential for adapting real-time interactions based on
engagement states.

Engagement is a complex phenomenon that cannot be fully understood through a single
modality. The model’s differential weighting of various features supports the idea that engage-
ment detection benefits from a multimodal approach. For instance, gaze orientation, a major
feature of attention, is closely tied to social presence in robotic companions. In this study, this
correlates with the lower engagement level where the users spend time looking away from the
screen or making eye contact with the robot. Head pose, another key indicator, reflects body
language and attentiveness. This suggests that in adaptive HRI, robots capable of interpreting
users’ head pose could tailor their responses or adjust task difficulty in real-time to re-engage
users, highlighting the potential for robotic systems to leverage machine learning models to
assess and respond to user attentiveness, beyond just task performance. Furthermore, the
model’s reliance on facial action units to detect higher levels of engagement points to a crucial
intersection between facial action units and engagement. For example, robots that adjust their
behavior based on positive emotional cues, like smiles, could enhance user satisfaction and
prolong engagement.

Although task parameters were not explicitly included as variables in the analysis, all be-
havioral data — including facial expressions, gaze, and head pose — were collected during a
structured visuospatial memory task. As such, these cues are inherently tied to participants’
engagement with the task. Given the cognitive demands of the activity, the model is likely to
generalize well to other high-tempo cognitive scenarios, such as video games, cognitive training
programs, or driving simulations.

Despite these contributions, the study acknowledges the importance of context in evaluating
engagement, noting that engagement is context-sensitive and can vary across tasks. For example,
placing the robot beyond the screen, could affect engagement outcomes [49], resulting in less
attention directed at the robot if it is placed in the peripheral vision. In different tasks, whether
non-social or other types of social interactions, users may express their engagement in distinct
ways [48]. This distinction underscores the task-dependent nature of affective states and
engagement. We acknowledge that the use of facial expression, head pose, and gaze orientation
captures some aspects of user engagement — primarily affect, attention, and interest — but
misses many of the cognitive, behavioral, and experiential dimensions outlined in the broader
definition. Furthermore, there is a need for further research to broaden the generalizability
of these findings by incorporating diverse user populations. Future studies should aim to
incorporate user experiences and physiological data to gain deeper insights into affective states
and enhance the model’s reliability.

Moreover, the permutation feature importance analysis is sensitive to feature collinearity



and dependent on a single trained model. While more advanced methods account for feature
interactions and offer uncertainty bounds on feature importance, they were beyond the spe-
cific objectives of this study, which aimed to provide an initial understanding of the relative
importance of engagement features. For example, Fisher et al. [46] introduced a framework
that evaluates feature importance across the entire class of well-performing models, known
as Model Class Reliance. This provides bounds on a feature’s importance and accounts for
feature interactions and redundancy. Similarly, SHAP (SHapley Additive exPlanations) offers
an explanation method grounded in cooperative game theory, attributing contributions to
individual features while accounting for interactions [45].

In conclusion, this research establishes a foundation framework for understanding and quan-
tifying user engagement in HRI, presenting significant advancements and practical implications
while also identifying critical areas for further investigation.
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