
Different Hallucinations calls for Different Solutions –
A Categorisation of LLM Transcription Mistakes
Nemi Pelgrom1,∗, Håkan Grahn2

1Department of Computer Science and Media Technology, Linnaeus University
2Department of Computer Science, Blekinge Institute of Technology

Abstract
This paper presents a contribution to better interpretation of the results we get from GenAI models,
more specifically, better interpretation of the mistakes that they make. We have conducted an analysis of
644 (from GPT-4o) + 4858 (from ARIA) mistakes made by two models on a key-value extraction task, and
found that they may be categorised into three mutually exclusive groups. These groups are; i problems
identifying the requested information, p problems presenting the correct information, and s skewed
training data. These categories could be used to indicate which action a user could take to reduce the
number of mistakes. Further, we have found a strong correlation between the suggested categories and
the Ratcliff/Obershelp pattern recognition score between the generated result and the expected result; all
faulty results containing minor mistakes are more than 60% similar to the expected result. Only mistakes
based on lack of identifying what was requested had less than 60% similarity to the expected result.

Keywords
Generative AI, LLM, Verification, Document analysis

1. Introduction

While there aremany papers detailing the accuracy of large languagemodels’ (LLMs’) knowledge
of particular topics, or forms of reasoning, we are looking closer at the different ways that LLMs
are making mistakes, often called “hallucination”. While hallucinations are mentioned much
in media and AI research, the focus is mainly on avoiding them. One dimensional accuracy
measurements are giving some indication of how well models are presenting results at particular
tasks. The lack of discussion on what form the mistakes are taking in most of those papers are
leaving us with little insight into how one might reach higher accuracy results. For example,
shall we do better prompting, use better models, change the line of questioning, how one might
avoid the wrong results [1, 2], and what might be the edge cases that were not easy to classify
as right or wrong [3, 4, 5]?

This experiment had the aim of identifying patterns in the mistakes made by GenAI models
with vision capabilities, to better interpret if a model is the right fit for a certain task. This is
relevant to the currently emerging paradigm, where there are GenAI models of varying formats

SAIS2025: Swedish AI Society Workshop 2025, 16-17 June 2025, Halmstad, Sweden.
∗Corresponding author.
Envelope-Open nemi.pelgrom@lnu.se (N. Pelgrom); hakan.grahn@bth.se (H. Grahn)
GLOBE https://lnu.se/personal/nemi.pelgrom/ (N. Pelgrom); https://grahn.cse.bth.se/ (H. Grahn)
Orcid 0009-0004-0150-665X (N. Pelgrom); 0000-0001-9947-1088 (H. Grahn)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:nemi.pelgrom@lnu.se
mailto:hakan.grahn@bth.se
https://lnu.se/personal/nemi.pelgrom/
https://grahn.cse.bth.se/
https://orcid.org/0009-0004-0150-665X
https://orcid.org/0000-0001-9947-1088
https://creativecommons.org/licenses/by/4.0

and aims, and the main question is no longer what model structure is the best one, but rather
“What model is the best for my particular task”.

We have conducted previous experiments on transcription tasks which had indicated possibil-
ities to systematically categorise the mistakes made [6, 7] (while hallucinations is currently used
to refer to a wide range of mistakes made by all GenAI models [8], we find this terminology to
be unhelpful, and will mainly use the term mistake to refer to the responses that are faulty). This
paper is a continuation of that work, towards systematically identifying the different mistakes
that these models make, so that we may better identify the best path forward when we get
lower-than-expected results from a GenAI model. It is not currently possible to automatically
identify whether the model or the prompt, or something else in the requested task is responsible
for unsatisfying results, when such occur. We contribute towards making such an identification
possible by here reporting our methods and results for identifying categories of mistakes that
are likely to have different sources.

The experiment is using the two multimodal generative models GPT-4o and ARIA to complete
a transcription task on a dataset of 3000 images. This provides us with an environment where
it is immediately clear if the model is understanding the requested task, and where it is easy
to automatically separate the correct answers from the incorrect ones, as opposed to pure
text questions which often require some qualitative interpretation. Further, we are requesting
transcriptions of both numbers and of natural language strings separately, allowing us to identify
possible differences in how they are interpreted by the models.

2. Background and Related work

The development of vision augmented LLM models has gone fast. The first ones were made
easily available just a year ago [9]. Despite this, there is such wide interest in using them that
there have been several significant developments since then. There are now many options for
vision-LLMs [10], including several open-source ones [11, 12]. Open-source models are extra
interesting for tasks which require careful data-handling. For example, medical sciences are
one of the main driving forces in AI enhanced image interpretation tasks [13], and many of
the images gathered for medical studies contain personally identifiable information, making
them difficult to handle without breaking confidentiality laws. When it is possible to run all AI
tasks locally, such issues disappear. This progress also builds on decades of research in optical
character recognition (OCR), which has long aimed to automate transcription tasks and other
kinds of information extraction from images. While traditional OCR methods had limitations
in dealing with complex layouts or degraded text, vision-capable models have significantly
improved the accuracy and versatility of these systems, expanding their usefulness in domains
that demand both precision and context understanding [7, 14, 15].

Vision models generally have a three-part structure; one for interpreting the image, one for
interpreting text, and one that combines the end result in a fitting way [16, 17]. There are other
versions suggested as well [18, 19]. Many of these models are possible to fine-tune to be better
at your desired task. There are several different ways this may be done. Regular fine-tuning,
where the whole model is re-trained with the added dataset. LoRA (Low Rank Adaption) [20, 21]
fine-tuning, where the new training-data is added in between layers rather than making any

changes to the pre-trained parts of the model. And there are also good results from adding the
new data to the beginning of the model [22].

There are also other ways to add additional training-data to a pre-trained model. These
include Retrieval Augmented Generation (RAG) [23], larger context windows [24], and creating
pipelines which ads the relevant information to the model at the right time [25].

A recent addition to the set of GenAI architecture is mixture-of-experts solutions. These aim
at minimising the effort used for any particular task, by allowing for separating the models
into several parts, where some parts may be ignored when they are deemed irrelevant for the
intended task [26]. For our experiment, we are using a model based on this kind of architecture;
ARIA [27], the best GenAI model with vision-to-text capabilities available to run locally at the
beginning of this project. To contrast it, we are using OpenAIs model GPT4-o, the best available
model with vision-to-text capabilities at the time.

With these great progresses, there are still some shortcomings [28, 29]. Hallucinations have
become the standard word to use for mistakes made by Generative AI models [30, 31], and there
are both many ways for the models to make mistakes [32, 33, 34], and for us researchers to judge
or estimate what should be counted as a mistake [35, 36]. This is the area in which our paper
will contribute. There have been some in-depth qualitative studies done on the hallucinations
of these models [37, 8], discussing how the content and factuality of text relates to generated
text [28, 38, 39], and of course the many that are stating the presence of mistakes simply by
presenting the accuracy results of some experiment [40]. There have not been much exploration
of what can be learned quantitatively from the mistakes themselves. While simple accuracy
estimations allow for fast comparison between several ways to solve the same task, they give
little insight into how any of the ways may be improved. The emergence of prompt engineering
as a role in itself [41, 42, 43] shows that it is possible to reach significantly different accuracy
results depending not only on the information provided to the model of what task it should
complete, but also how the information is presented to the model. It would be valuable to be
able to identify whether lower accuracy results from using a model is due to the limitations of
the model, or to the limitations of the prompt used.

3. Methodology

This section contains all the details of the conducted experiment, the results are presented in
the next section.

3.1. Dataset

The dataset consists of 3000 images of real receipts collected from a wide range of purchases
in Sweden. The images are scans or photos containing both full view of receipts, and in most
cases some additional background such as hands, tables, and knees. Most of the receipts have
wrinkles and are not fully flat, which makes them harder to read, and keeps them representative
of receipt scans that are uploaded to receipt-reading services.

These images provide a complex task of identifying the correct information requested in the
prompt, extracting it correctly, and then presenting it in the way specified by the prompt. If

any one of these steps go wrong, the end result will be faulty. This makes it very impressive
that some of these models are able to reach high accuracy results [7, 19].

So from this raw dataset, we created the data used in our experiment; we ran each image
through each of the two models, and created separate JSON files containing the response of
each reading, for each of the model. The same prompt was used for both models. GPT-4o was
accessed through an API call, and ARIA was run locally on a Nvidia A100 GPU. These models
were chosen for being the best available, and respectively the best available to run locally, in
regards to OCR tasks [44], at the time of our experiments.

This gave us three datasets for our comparisons: 3000 JSON files with GPT-4o transcriptions,
3000 JSON files with ARIA transcriptions, and 3000 JSON files containing the key for each
image.

We made python code that compared a selection of keys from each file: date, total amount to
pay, VAT amount, company name, and organisation number. We chose these keys to include in
this experiment because they are present in most of the images, so they are more representative
of a standard receipt than for example ”tips” which are only present on a small minority of the
images. When we originally included more of these keys in the comparison, it meant we had
to do much more data cleaning. We decided a smaller dataset is preferable to a more complex
cleaning step, to ensure the replicability of our results.

3.2. Prompt

The prompt that was used was developed by Fortnox AB, with support from Microsoft. It is
extracting most of the information that could be of book-keeping interest from each receipt.
While this means that a large amount of keys have been extracted from each image, we choose
to do our analysis on only 5 keys, so that we only looked at what is available on the majority of
the images. Including keys that exist on fewer of the images would require more time spent on
the data cleaning, without increasing the amount of useful mistakes in a proportional way.

We included TotalAmount as a representation of a free-format number. We included date, and
VAT as a representations of a number to be extracted in a specific format. OrganisationNumber
as a representation of longer number strings (which are known to be difficult for GenAI models
[6]), and finally MerchantName to represent text. We included this variety of keys, since it is
known that there are patterns of different mistakes made for different kinds of information.

1 Your task is to extract EXACT information from receipts.
2 Extract the total amount to pay (totalt, totalbelopp, att betala).
3 Extract the total vat (moms, momsbelopp, total moms).
4 Extract one or more vat details (moms).
5 Vat rates can only be 25% | 12% | 6% | 0%. Use 0% if no vat is found.
6 Extract the currency.
7 Extract the date (format yyyy-MM-dd). Use "" if not found.
8 Extract payment method (betalningsmetod).
9 Extract tip if found.

10 Extract bonuses or discounts if found.
11 Extract the supplier name. Use "" if not found.
12 Extract the supplier organisation number (organisationsnummer / orgnummer). Use "" if

not found.↪

13 Extract all items (articles).
14

15 Your final output must satisfy the following typescript schema:
16

17 Valid VAT rates
18 type VatRate = "0%" | "12%" | "25%" | "6%";
19

20 Valid payment methods
21 type PaymentMethod = "" | "card" | "gift card" | "mobile" | "swish";
22

23 Valid currency types
24 type Currency = "SEK" | "DKK" | "NOK" | "EUR" | "USD" | "GBP" | "JPY" | "AUD" | "CHF"

| "CAD" | "CNY" | "SGD" | "KRW" | "PLN" | "INR" | "HUF" | "other";↪

25

26 Item interface
27 interface Item {
28 totalAmount: number;
29 quantity: number;
30 price: number;
31 name: string;
32 }
33

34 VAT detail interface
35 interface VatDetail {
36 amount: number;
37 rate: VatRate;
38 }
39

40 Main receipt interface
41 interface Receipt {
42 date: string;
43 bonus: number;
44 vat: number;
45 currency: Currency;
46 merchantName: string;
47 totalAmount: number;
48 orgno: string;
49 paymentMethod: PaymentMethod;
50 tip: number;
51 vatDetails: VatDetail[];
52 items: Item[];
53 }
54

55 Return the response in a JSON-format that satisfies the above typescript type for
Receipt.↪

56 Only use the types from above nothing else.
57 Only output pure json.
58 Do your best, think step by step.

3.3. Data Cleaning

We have two datasets of 15000 comparisons (the amount of files multiplied with the amount of
keys we chose for the comparison) in the format of excel sheets.

For each of them we conduct the following steps:

1. We remove all rows where our transcriptions match the keys.
2. We remove all rows where the key has no entry.
3. This left us with 644 (GPT-4o), and 4858 (ARIA) results that did not match their respective

keys.

An additional 488 rowswere removed during the annotation process. These were comparisons
that were not identifiable earlier in the process as irrelevant to our study, but which could have
skewed our results if they have been left in the final dataset. All of these rows were ones where
we deemed it inaccurate to count the transcription as wrong, despite it not matching the key.
Here are some examples of these instances:

• The key stating ”Company Name”, and the model’s result is stating ”Company Name AB”.
Both answers are present on the receipt and may therefore be seen as correct.

• The key stating ”179.90” and the transcription stating ”180”, and the image stating that
the total amount is 180, but that the card was charged 179.90. Both answers are therefore
present on the receipt as a total amount, and may be seen as correct.

Only these false positives were removed.

3.4. Annotation

Once the set of transcriptions was ready, we annotated each row with one of the following:

• i: the mistake is not correctly identifying what information is requested
• s: the mistake is skewed data, presenting a word or number that is clearly not a misreading
of what is present on the image, but instead a word or number from the training data
that the model interprets as equivalent

• p: when the correct information is identified, and mostly correctly presented, we have
annotated with p for presentation, where the mistake is a presentation problem. Wrong
spellings are included here. Reading i as 1, and 8 as 3, are included here.

Category s could be understood as relating to the category ”confabulations” as introduced
in [39]. They are not identical since that concept is focused on the meaning content of text,
and we are focusing on the characters, but both concepts aim to find wrong answers that may
appear right when there is no key available. No row was left unannotated, and the categories
are mutually exclusive so that no row could be annotated into more than one category.

3.5. Ratcliff/Obershelp pattern, Jaccard simularity and Levenshtein distance

Once all rows were annotated, we had noticed a pattern of mistakes in the p category being
close to the correct replies with only a difference of one or two symbols (e.g. misspellings or

reading a 7 as a 1). This is partly per definition, but indicated a possibility of automatically
identifying which category a particular mistake belongs to. Based on this, we ran the document
through Python code that added a Ratcliff/Obershelp pattern calculation [45], a Jaccard similarity
percentage [46], and a Levenshtein distance [47] for each row. We found that there was a strong
correlation between the Ratcliff/Obershelp similarity of a response to its key, and what mistake
category it had been annotated as. While it is not surprising that we found correlations, since
part of the definition of the category p that the result is similar to the correct one, it was
unexpected that there was a consistent amount of spelling mistakes, rather than an evenly
distributed one.

Levenshtein distance, however, did not show any useful correlation with the categories.
While it correctly identifies long strings as being close to the correct answer when there are
only spelling mistakes, it does not account for length of the compared strings, which makes
fully wrong replies score equally good as slightly wrong ones, when the compared strings are
short.

Jaccard similarity had some predictive value; lower similarity correlates with category i, and
higher with category p, however there is no cut-off point between them, and the distribution is
broad. Further, Jaccard similarity is based on only the characters that are present, which means
that it calculates two strings as equal, if they contain the same characters, even if the characters
are not in the same order. This means that it equates 660 with 600, which is not ideal.

Ratcliff/Obershelp pattern matching, also called Gestalt pattern matching, is accounting
for the characters present, the lengths of the strings, and the order of the characters in the
strings. This makes it a useful algorithm for identifying what kind of mistake a generative
model has made, by simply calculating the pattern matching score. And such an estimate may
be performed automatically, making it possible to identify the character of the mistakes a model
makes for a task without any further manual or otherwise qualitative interpretation of faulty
responses from models. When we sorted the rows according to their similarity score, we found
a very strong cut-off point, where there are no instances of i mistakes above it, and no instances
of p mistakes below it. This correlation will be shown in detail in the results section. While this
is here shown to be true in the context of our experiment, we have not yet tested the possibilities
of generalising this to other application areas. It is possible that this correlation holds true
for other tasks where it is possible to systematically identify one unique correct answer in
relation to a prompt. The category s (hallucinations according to the most common usage of it
in literature on Chatbots; ”fictional or erroneous information” [8]) had no cut-off point, but the
majority of the mistakes in this category had a high Ratcliff/Obershelp similarity score.

4. Results and Discussion

We present two primary findings from this experiment. First, we identified a consistent and
practical categorization scheme for all transcription mistakes made by GenAI models with
vision-to-text capabilities, in scenarios where a structured key is available for comparison.
These categories—i (identification), p (presentation), and s (skewed training data)—are broadly
applicable across all types of errors observed in our experiments, which involved thousands of
receipt images.

As shown in Table 1, both ARIA and GPT-4o models produced mistakes that fell across
all three categories, and the distributions of these mistakes are not uniform. ARIA made
significantly more total mistakes (4,858 vs. 644), and the majority of its mistakes (4,124) were
classified as identification mistakes. GPT-4o, by contrast, exhibited a more balanced distribution,
with 403 presentation, and 138 identification mistakes. This uneven distribution suggests that
these errors are not random and may reflect inherent tendencies in how each model handles
uncertainty or incomplete information. While it is well known that GPT-4o avoid giving blank
answers to the degree of producing factual contradictions [48, 49, 50, 24], such tendencies are
not necessary for all GenAI models, which might be the explanation for this difference in this
case.

Table 1
Number of mistakes identified in each category for each model.

Dataset Model Total data-points Total mistakes i p s
Fortnox 3000 ARIA 15000 4858 4124 605 129
Fortnox 3000 GPT-4o 15000 644 138 403 103

This disparity highlights that these errors are not random; rather, they reflect consistent
patterns tied to model behaviour. Table 2 quantifies the difference, using GPT-4o as a baseline:
ARIA made 2,888% more identification mistakes, 50% more presentation mistakes, and 25% more
skewed data mistakes. The striking increase in i mistakes from ARIA suggests a conservative
extraction approach—opting to leave fields blank when uncertain.

Table 2
Variance in the number of mistakes in each category between different models.

Category GPT-4o ARIA Variance (%)
i 138 4124 +2888%
p 403 605 +50%
s 103 129 +25%

Field-level analysis provides more insight. Table 3 breaks down the number and type of
mistakes by data key. ARIA’s highest concentration of identification errors occurred with the
Merchant Name and Organisation Number fields—1,619 and 1,847 respectively. For these, the
model frequently failed to return any value, even when the information was clearly visibly
present in the image. Table 4 supports this: ARIA’s empty response rate was 91% for Merchant
Name and 98% for Organisation Number, versus 40% and 9% for GPT-4o, respectively. These
high omission rates indicate ARIA’s tendency to skip uncertain fields entirely, possibly due to a
narrower confidence threshold or the model being overwhelmed by the amount of information
that was requested of it [51, 52].

The significant difference in identifying Organisation Numbers may also be explained by
the structural properties of receipts and the training-data of the models. For example, Swedish
Organisation Numbers are often present but not explicitly labelled as such in the receipts in our
dataset. Models not specifically trained to recognize these patterns, such as ARIA, are more
prone to fail on identification, especially if they rely on keyword cues. GPT-4o, by contrast,

appears more likely to attempt a response even when uncertain, which explains its higher
relative rate of presentation mistakes, where the correct value is approximated but not matched
exactly to the key.

Table 3
Distribution of mistakes across keys and models. All categories of mistakes were found in all of the
subcategories that were analysed.

Category
GPT-4o ARIA

i p s i p s
Date 6 75 2 10 271 110
VAT 35 45 4 522 81 2
Merchant Name 48 37 2 1619 122 9
Total Amount 25 13 1 126 92 3
Org No 24 233 94 1847 39 5

Table 4
How many of all mistakes were empty responses, and how many were Category s.

Category
Empty Values Category s

GPT-4o ARIA GPT-4o ARIA
Amount % Amount % Amount % Amount %

Date 6 7% 10 3% 2 2% 110 28%
VAT 10 12% 113 19% 4 5% 2 0.3%
Merchant Name 35 40% 1597 91% 2 2% 9 1%
Total Amount 5 13% 14 6% 1 3% 3 1%
Org No 17 9% 1845 98% 94 27% 5 0.3%

Additionally, the Merchant Name field revealed another nuance. According to Table 5, this
field was the most affected by cleaning in both model outputs. GPT-4o had a 21% retention rate
post-cleaning, while ARIA retained 86%. This difference is partly explained by ARIAs tendency
to give blank answers. But it brings our attention to another issue with automatic accuracy
estimations; instances where there are multiple correct answers. All of the results that were
removed in this data-cleaning had the issue of having multiple accurate results. They could
have been included in our experiment if the keys were of a format that allowed several answers
to be understood as correct.

The second major finding is the strong correlation between Ratcliff/Obershelp similarity
scores and error category. Table 6 shows that all identification mistakes i had similarity scores
below 60%, while presentation mistakes p had scores of 60% or higher. Skewed data mistakes
s showed a mixed pattern: most were above 60%, but a small percentage (10% for GPT-4o,
5% for ARIA) fell between 35–60%. This suggests that Ratcliff/Obershelp similarity can be
used as a heuristic for error classification, high similarity likely indicates p or s errors, while
low similarity indicates i errors. The exact threshold may vary depending on text length and
structure of the information that is extracted, but the trend holds across both models and all
keys that we tested.

Further analysis of skewed data errors reveals model-specific behaviour. ARIA exhibits a
high rate of s errors in the Date field (28%), suggesting a tendency to hallucinate plausible

Table 5
Data loss during the cleaning process for each key, for each model.

Category Original Cleaned % of Original
GPT-4o

Date 122 83 68%
VAT 95 84 88%
Merchant Name 408 87 21%
Total Amount 89 39 44%
Organisation No 419 351 84%

ARIA
Date 423 391 92%
VAT 674 604 90%
Merchant Name 2054 1760 86%
Total Amount 257 221 86%
Organisation No 1891 1891 100%

Table 6
Distribution of items by Ratcliff/Obershelp Similarity threshold (60% cutoff).

Category < 60% < 60% (%) ≥ 60% ≥ 60% (%) Number of
GPT-4o

i 138 100% 0 0% 138
p 0 0% 403 100% 403
s 18 17% 85 83% 119

ARIA
i 4124 100% 0 0% 4124
p 0 0% 605 100% 605
s 7 5% 122 95% 129

but incorrect values when uncertain. In contrast, GPT-4o shows more skewed mistakes in the
VAT field (5%), but overall keeps skewed data rates low across most keys (Table 4). These
patterns reinforce the idea that ARIA is conservative—risking omissions—while GPT-4o aims
for completeness, sometimes at the expense of accuracy.

By combining our categorization with Ratcliff/Obershelp similarity metrics, we provide a
replicable framework for analysing transcription performance.

5. Conclusion

We made an experiment focused on identifying categories of mistakes made by GenAI models,
with the intention of finding patterns that could help clarify what models may or may not be
useful for particular tasks, further than a simple accuracy estimate does. We found two useful
patterns; that there are three systematically identifiable categories of mistakes that reoccur
across different models, and that there is a simple way to automatically sort mistakes into at least
two of these categories. This paper reports the details of how the experiment was conducted,
and we suggest that further research should be done on the possibilities of generalising these

findings, and on identifying the reasons for why these mistakes occur.

Acknowledgments

We want to thank Fortnox AB for providing the dataset, prompt, and financial support for this
project, and we also thank the reviewers for their helpful contributions.

References

[1] S. Tonmoy, S. Zaman, V. Jain, A. Rani, V. Rawte, A. Chadha, A. Das, A comprehensive
survey of hallucination mitigation techniques in large language models, arXiv preprint
arXiv:2401.01313 6 (2024).

[2] M. Peychev, M. Müller, M. Fischer, M. Vechev, Automated classification of model errors on
imagenet, Advances in Neural Information Processing Systems 36 (2023) 36826–36885.

[3] C. Thomson, E. Reiter, B. Sundararajan, Evaluating factual accuracy in complex data-
to-text, Comput. Speech Lang. 80 (2023). URL: https://doi.org/10.1016/j.csl.2023.101482.
doi:10.1016/j.csl.2023.101482.

[4] A. Dutta, S. Krishnan, N. Kwatra, R. Ramjee, Accuracy is not all you need, arXiv preprint
arXiv:2407.09141 (2024).

[5] B. Goodrich, V. Rao, P. J. Liu, M. Saleh, Assessing the factual accuracy of generated text, in:
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD ’19, ACM, 2019, p. 166–175. URL: http://dx.doi.org/10.1145/3292500.
3330955. doi:10.1145/3292500.3330955.

[6] N. Pelgrom, J. Hangelbäck, M. Ericsson, J. Nordqvist, H. Grahn, Hallucinations and
training-data bias: Results from two number transcription experiments using gpt models,
in: International Conference on Computational Science and Computational Intelligence,
Springer, 2025, pp. 59–69.

[7] N. Pelgrom, M. Ericsson, H. Grahn, J. Nordqvist, J. Hagelbäck, Chatgpt as a combined
ocr and key-value extractor, in: 2025 IEEE 10th International Conference on Big Data
Analytics (ICBDA), 2025. Accepted, to appear.

[8] N. Maleki, B. Padmanabhan, K. Dutta, Ai hallucinations: a misnomer worth clarifying, in:
2024 IEEE conference on artificial intelligence (CAI), IEEE, 2024, pp. 133–138.

[9] OpenAI, Gpt-4v(ision) system card, https://openai.com/index/gpt-4v-system-card/, 2024.
Accessed: 2024-10-14.

[10] W. Wang, Z. Chen, X. Chen, J. Wu, X. Zhu, G. Zeng, P. Luo, T. Lu, J. Zhou, Y. Qiao, et al.,
Visionllm: Large language model is also an open-ended decoder for vision-centric tasks,
Advances in Neural Information Processing Systems 36 (2024).

[11] H. Liu, C. Li, Q. Wu, Y. J. Lee, Visual instruction tuning, Advances in neural information
processing systems 36 (2024).

[12] Z. Peng, W. Wang, L. Dong, Y. Hao, S. Huang, S. Ma, F. Wei, Kosmos-2: Grounding
multimodal large language models to the world, 2023. URL: https://arxiv.org/abs/2306.
14824. arXiv:2306.14824.

https://doi.org/10.1016/j.csl.2023.101482
http://dx.doi.org/10.1016/j.csl.2023.101482
http://dx.doi.org/10.1145/3292500.3330955
http://dx.doi.org/10.1145/3292500.3330955
http://dx.doi.org/10.1145/3292500.3330955
https://openai.com/index/gpt-4v-system-card/
https://arxiv.org/abs/2306.14824
https://arxiv.org/abs/2306.14824
http://arxiv.org/abs/2306.14824

[13] S. Zhang, D. Metaxas, On the challenges and perspectives of foundation models for medical
image analysis, Medical image analysis 91 (2024) 102996.

[14] S. Kim, J. Baudru, W. Ryckbosch, H. Bersini, V. Ginis, Early evidence of how llms outperform
traditional systems on ocr/htr tasks for historical records, 2025. URL: https://arxiv.org/abs/
2501.11623. arXiv:2501.11623.

[15] S. Chen, X. Guo, Y. Li, T. Zhang, M. Lin, D. Kuang, Y. Zhang, L. Ming, F. Zhang, Y. Wang,
J. Xu, Z. Zhou, W. Chen, Ocean-ocr: Towards general ocr application via a vision-language
model, 2025. URL: https://arxiv.org/abs/2501.15558. arXiv:2501.15558.

[16] L. H. Li, M. Yatskar, D. Yin, C.-J. Hsieh, K.-W. Chang, Visualbert: A simple and performant
baseline for vision and language, arXiv preprint arXiv:1908.03557 (2019).

[17] A. Masry, J. A. Rodriguez, T. Zhang, S. Wang, C. Wang, A. Feizi, A. K. Suresh, A. Puri,
X. Jian, P.-A. Noël, S. T. Madhusudhan, M. Pedersoli, B. Liu, N. Chapados, Y. Bengio,
E. Hoque, C. Pal, I. H. Laradji, D. Vazquez, P. Taslakian, S. Gella, S. Rajeswar, Alignvlm:
Bridging vision and language latent spaces for multimodal understanding, 2025. URL:
https://arxiv.org/abs/2502.01341. arXiv:2502.01341.

[18] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E. Gonzalez, H. Zhang, I. Stoica,
Efficient memory management for large language model serving with pagedattention,
2023. URL: https://arxiv.org/abs/2309.06180. arXiv:2309.06180.

[19] M. Faysse, H. Sibille, T. Wu, B. Omrani, G. Viaud, C. Hudelot, P. Colombo, Colpali: Efficient
document retrieval with vision language models, 2024. URL: https://arxiv.org/abs/2407.
01449. arXiv:2407.01449.

[20] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, et al., Lora:
Low-rank adaptation of large language models., ICLR 1 (2022) 3.

[21] Y. Mao, Y. Ge, Y. Fan, W. Xu, Y. Mi, Z. Hu, Y. Gao, A survey on lora of large language
models, Frontiers of Computer Science 19 (2025) 197605.

[22] R. Zhang, J. Han, C. Liu, P. Gao, A. Zhou, X. Hu, S. Yan, P. Lu, H. Li, Y. Qiao, Llama-
adapter: Efficient fine-tuning of language models with zero-init attention, 2024. URL:
https://arxiv.org/abs/2303.16199. arXiv:2303.16199.

[23] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t.
Yih, T. Rocktäschel, et al., Retrieval-augmented generation for knowledge-intensive nlp
tasks, Advances in Neural Information Processing Systems 33 (2020) 9459–9474.

[24] S. Chen, S. Wong, L. Chen, Y. Tian, Extending context window of large language models
via positional interpolation, arXiv preprint arXiv:2306.15595 (2023).

[25] A. Scius-Bertrand, A. Fakhari, L. Vögtlin, D. R. Cabral, A. Fischer, Are layout analysis
and ocr still useful for document information extraction using foundation models?, in:
International Conference on Document Analysis and Recognition, Springer, 2024, pp.
175–191.

[26] N. Ding, Y. Qin, G. Yang, F. Wei, Z. Yang, Y. Su, S. Hu, Y. Chen, C.-M. Chan, W. Chen,
et al., Parameter-efficient fine-tuning of large-scale pre-trained language models, Nature
Machine Intelligence 5 (2023) 220–235.

[27] D. Li, Y. Liu, H. Wu, Y. Wang, Z. Shen, B. Qu, X. Niu, G. Wang, B. Chen, J. Li, Aria: An
open multimodal native mixture-of-experts model, arXiv preprint arXiv:2410.05993 (2024).

[28] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang, A. Madotto, P. Fung, Survey
of hallucination in natural language generation, ACM computing surveys 55 (2023) 1–38.

https://arxiv.org/abs/2501.11623
https://arxiv.org/abs/2501.11623
http://arxiv.org/abs/2501.11623
https://arxiv.org/abs/2501.15558
http://arxiv.org/abs/2501.15558
https://arxiv.org/abs/2502.01341
http://arxiv.org/abs/2502.01341
https://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2407.01449
https://arxiv.org/abs/2407.01449
http://arxiv.org/abs/2407.01449
https://arxiv.org/abs/2303.16199
http://arxiv.org/abs/2303.16199

[29] P. P. Liang, A. Zadeh, L.-P. Morency, Foundations & trends in multimodal machine learning:
Principles, challenges, and open questions, ACM Computing Surveys 56 (2024) 1–42.

[30] N. Maleki, B. Padmanabhan, K. Dutta, Ai hallucinations: A misnomer worth clarifying,
in: 2024 IEEE Conference on Artificial Intelligence (CAI), 2024, pp. 133–138. doi:10.1109/
CAI59869.2024.00033.

[31] L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen, W. Peng, X. Feng,
B. Qin, T. Liu, A survey on hallucination in large language models: Principles, taxonomy,
challenges, and open questions, ACM Trans. Inf. Syst. 43 (2025). URL: https://doi.org/10.
1145/3703155. doi:10.1145/3703155.

[32] P. Koehn, R. Knowles, Six challenges for neural machine translation, ACL 2017 (2017) 28.
[33] S. A. Athaluri, S. V. Manthena, V. K. M. Kesapragada, V. Yarlagadda, T. Dave, R. T. S.

Duddumpudi, Exploring the boundaries of reality: investigating the phenomenon of
artificial intelligence hallucination in scientific writing through chatgpt references, Cureus
15 (2023).

[34] J. Gravel, M. D’Amours-Gravel, E. Osmanlliu, Learning to fake it: limited responses and
fabricated references provided by chatgpt for medical questions, Mayo Clinic Proceedings:
Digital Health 1 (2023) 226–234.

[35] S. Banerjee, A. Agarwal, S. Singla, Llms will always hallucinate, and we need to live with
this, arXiv e-prints (2024) arXiv–2409.

[36] S. Barros, I think, therefore i hallucinate: Minds, machines, and the art of being wrong,
arXiv e-prints (2025) arXiv–2503.

[37] J. Li, J. Chen, R. Ren, X. Cheng, W. X. Zhao, J.-Y. Nie, J.-R. Wen, The dawn after the dark:
An empirical study on factuality hallucination in large language models, in: Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2024, pp. 10879–10899.

[38] Y. Bang, Z. Ji, A. Schelten, A. Hartshorn, T. Fowler, C. Zhang, N. Cancedda, P. Fung,
Hallulens: Llm hallucination benchmark, arXiv preprint arXiv:2504.17550 (2025).

[39] S. Farquhar, J. Kossen, L. Kuhn, Y. Gal, Detecting hallucinations in large language models
using semantic entropy, Nature 630 (2024) 625–630.

[40] F. Liu, Y. Liu, L. Shi, H. Huang, R. Wang, Z. Yang, L. Zhang, Z. Li, Y. Ma, Exploring and
evaluating hallucinations in llm-powered code generation, arXiv preprint arXiv:2404.00971
(2024).

[41] L. Giray, Prompt engineering with chatgpt: a guide for academic writers, Annals of
biomedical engineering 51 (2023) 2629–2633.

[42] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. Elnashar, J. Spencer-Smith,
D. C. Schmidt, A prompt pattern catalog to enhance prompt engineering with chatgpt,
arXiv preprint arXiv:2302.11382 (2023).

[43] P. Sahoo, A. K. Singh, S. Saha, V. Jain, S. Mondal, A. Chadha, A systematic survey of
prompt engineering in large language models: Techniques and applications, arXiv preprint
arXiv:2402.07927 (2024).

[44] H. Duan, J. Yang, Y. Qiao, X. Fang, L. Chen, Y. Liu, X. Dong, Y. Zang, P. Zhang, J. Wang,
et al., Vlmevalkit: An open-source toolkit for evaluating large multi-modality models,
in: Proceedings of the 32nd ACM International Conference on Multimedia, 2024, pp.
11198–11201.

http://dx.doi.org/10.1109/CAI59869.2024.00033
http://dx.doi.org/10.1109/CAI59869.2024.00033
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
http://dx.doi.org/10.1145/3703155

[45] J. W. Ratcliff, D. E. Metzener, et al., Pattern matching: The gestalt approach, Dr. Dobb’s
Journal 13 (1988) 46.

[46] P. Jaccard, Nouvelles recherches sur la distribution florale, Bull. Soc. Vaud. Sci. Nat. 44
(1908) 223–270.

[47] V. I. Levenshtein, et al., Binary codes capable of correcting deletions, insertions, and
reversals, in: Soviet physics doklady, volume 10, Soviet Union, 1966, pp. 707–710.

[48] A. Payandeh, D. Pluth, J. Hosier, X. Xiao, V. K. Gurbani, How susceptible are llms to logical
fallacies?, 2023. URL: https://arxiv.org/abs/2308.09853. arXiv:2308.09853.

[49] R. Zhu, Z. Ma, J. Wu, J. Gao, J. Wang, D. Lin, C. He, Utilize the flow before stepping into
the same river twice: Certainty represented knowledge flow for refusal-aware instruction
tuning, 2024. URL: https://arxiv.org/abs/2410.06913. arXiv:2410.06913.

[50] X. Zhao, J. Yu, Z. Liu, J. Wang, D. Li, Y. Chen, B. Hu, M. Zhang, Medico: Towards
hallucination detection and correction with multi-source evidence fusion, 2024. URL:
https://arxiv.org/abs/2410.10408. arXiv:2410.10408.

[51] R. M. French, Catastrophic forgetting in connectionist networks, Trends in cognitive
sciences 3 (1999) 128–135.

[52] Y. Luo, Z. Yang, F. Meng, Y. Li, J. Zhou, Y. Zhang, An empirical study of catastrophic
forgetting in large language models during continual fine-tuning, 2025. URL: https://arxiv.
org/abs/2308.08747. arXiv:2308.08747.

https://arxiv.org/abs/2308.09853
http://arxiv.org/abs/2308.09853
https://arxiv.org/abs/2410.06913
http://arxiv.org/abs/2410.06913
https://arxiv.org/abs/2410.10408
http://arxiv.org/abs/2410.10408
https://arxiv.org/abs/2308.08747
https://arxiv.org/abs/2308.08747
http://arxiv.org/abs/2308.08747

	1 Introduction
	2 Background and Related work
	3 Methodology
	3.1 Dataset
	3.2 Prompt
	3.3 Data Cleaning
	3.4 Annotation
	3.5 Ratcliff/Obershelp pattern, Jaccard simularity and Levenshtein distance

	4 Results and Discussion
	5 Conclusion

