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Abstract
Object detection is a critical task in computer vision with wide-ranging applications, from autonomous driving to
surveillance systems. Despite notable progress, challenges such as detecting small objects, managing occlusions,
and effectively integrating multiscale features persist. We propose RetinaGate, a novel object detection architec-
ture that introduces a Gated Feature Pyramid Network (G-FPN) to adaptively fuse multi-scale features, enhanced
by Squeeze-and-Excitation-based channel attention for improved accuracy. As a plug-and-play module, G-FPN
can be seamlessly integrated into existing detection models to enhance their accuracy. These enhancements
strengthen the model’s capacity to capture fine-grained details and leverage contextual information more effec-
tively. Experimental results on three benchmark datasets demonstrate that RetinaGate outperforms the baseline
RetinaNet in terms of mean average precision, particularly in challenging detection scenarios such as underwater.

Keywords
Object Detection, RetinaNet, FPN, Gated Fusion, RetinaGate, SEBlock

1. Introduction

Object detection has become a cornerstone in the field of computer vision, with wide-ranging applica-
tions that include autonomous driving, medical diagnostics, and real-time video analysis [1]. As an
essential component of intelligent systems, object detection aims to locate and classify objects within
an image, making it crucial for tasks requiring both precision and computational efficiency [2, 3].

While deep learning detectors such as RetinaNet [4], Faster R-CNN [5], and YOLO [6] have achieved
remarkable progress, some challenges persist. These models often rely on multi-scale feature pyramids,
where higher pyramid levels provide strong semantics but low spatial resolution. As a result, small
object detection [7] remains a significant hurdle due to insufficient detail at these higher levels. Other
challenges include occlusion, where objects are partially hidden from view, and cluttered backgrounds,
which can lead to false positives or missed detections [8]. Furthermore, the semantic gap between
low-level features (which capture fine spatial details such as edges or textures) and high-level features
(which encode object-level semantics) can hinder precise localization and classification, especially in
complex environments [9, 10]. These limitations highlight the need for more sophisticated backbone
architectures and robust feature fusion mechanisms to improve detection accuracy across diverse
scenarios.

RetinaNet [11], a one-stage object detector known for its efficiency and Focal Loss, provides a robust
baseline for addressing common detection challenges. However, its default architecture can be further
enhanced to improve performance in complex scenarios, such as detecting small or occluded objects. One
limitation of the standard ResNet-50 backbone is its inability to adaptively focus on the most informative
feature channels, which can reduce its effectiveness in cluttered or context-rich scenes. In addition,
the standard Feature Pyramid Network (FPN) processes each pyramid level independently, without
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explicitly fusing cross-level information. This limits its ability to fully exploit the complementary
strengths of multi-scale features.

To address these limitations, we propose a novel enhancement to RetinaNet, called RetinaGate by
incorporating Squeeze-and-Excitation (SE) blocks [12] and a novel FPN, titled G-FPN (Gated Fusion FPN).
SE block, integrated into the ResNet-50 backbone, improve channel-wise attention, enabling the model
to prioritize the most informative features. The Gated Fusion module, applied after the Feature Pyramid
Network (FPN), enhances the fusion of multiscale features, ensuring robust performance across diverse
object sizes and challenging conditions, such as underwater object detection. These modifications
specifically target the weaknesses in handling small objects, occlusions, and the integration of multiscale
features, which are critical for achieving higher detection accuracy.

This paper is structured as follows. In Section 2, we discuss related works, focusing on advancements
in backbone architectures, feature fusion techniques, and one-stage detectors. Section 3 outlines the
methodology behind our proposed enhancements, detailing the integration of SE blocks and Gated
Fusion. Section 4 presents the datasets used for evaluation, and Section 5 reports the experimental
results, demonstrating the superiority of RetinaGate over the baseline RetinaNet. Finally, Section 6
concludes with future research directions.

2. Related works

The field of object detection has witnessed substantial progress with the development of various
architectures and techniques. Among them, RetinaNet has stood out as a significant contribution,
offering a balance between accuracy and computational efficiency. However, several studies have
identified limitations in RetinaNet and proposed enhancements to address them:

RetinaNet and Multiscale Detection: Lin et al. introduced RetinaNet with Focal Loss to mitigate
the impact of class imbalance in object detection [4]. Despite its success, challenges such as small object
detection and effective multiscale feature integration remain. For instance, the work by Kong et al.
introduced the Deep Feature Pyramid Network (DFPN) [13], which augments FPNs with enhanced
connectivity to improve multiscale detection, particularly for small objects. Similarly, Libra R-CNN [14]
addressed multiscale imbalance by introducing balanced feature pyramid integration. The NAS-FPN
[15] utilized neural architecture search to optimize feature pyramid designs, achieving state-of-the-art
performance on standard benchmarks such as COCO, particularly for small object detection. However,
these solutions often introduce significant computational complexity, including increased inference
time, memory usage, and training cost due to their deeper and more fragmented architectures. BiFPN,
proposed in EfficientDet [16], enhanced multiscale detection by employing lightweight, bidirectional
feature fusion. While effective, BiFPN requires fine-tuned hyperparameters and is not tailored for
one-stage detectors like RetinaNet.

Feature Enhancement Mechanisms: Researchers have proposed various mechanisms to enhance
feature representation. Hu et al. introduced Squeeze-and-Excitation Networks to recalibrate channel-
wise feature responses dynamically. These networks have been integrated into different architectures to
improve attention mechanisms. For example, SENet [17] was successfully applied to image classification
tasks, and Zhang et al. (2020) extended it to Faster R-CNN for improving object detection. Similarly, Woo
et al. proposed Convolutional Block AttentionModule (CBAM) [18], which combines channel and spatial
attention for enhanced feature extraction. CBAM has been incorporated into architectures like YOLOv4,
demonstrating improvements in feature selectivity. More recently, Efficient Attention Networks (EANet)
[19] introduced lightweight attention mechanisms for real-time object detection, which significantly
reduced computational overhead. However, these methods have primarily focused on classification
tasks or two-stage detectors, with limited exploration in one-stage models like RetinaNet.
Contextual and Multiscale Fusion: Feature fusion is another area of focus for improving object

detection [20]. Works such as PANet [21], and NAS-FPN [22] emphasize enhancing information
flow across scales. PANet introduced bottom-up path augmentation to complement FPN’s top-down
feature flow, improving multiscale detection capabilities. More recently, Auto-FPN [23] employed



neural architecture search to automatically design efficient feature fusion paths, addressing multiscale
detection while maintaining computational efficiency. Additionally, Dynamic FPN [24] integrated
adaptive mechanisms to dynamically adjust the contributions of feature levels based on the input image
characteristics, further enhancing context-aware fusion. Although effective, these approaches often
involve high computational costs, making them less suitable for real-time applications. Our approach
incorporates a Gated Fusion module, which selectively integrates multiscale features while maintaining
efficiency, addressing both contextual relevance and multiscale challenges.
Enhancements in FPN Design: Enhancements to the original FPN architecture have focused

on improving information flow and balancing feature contributions. Libra R-CNN [14] introduced a
balanced semantic path to reduce feature-level imbalance, significantly improving object detection
across scales. NAS-FPN [22] used neural architecture search to automate FPN design, resulting in
high-performing but computationally expensive structures. BiFPN, proposed in EfficientDet [16],
employed bidirectional fusion to refine multiscale feature integration while reducing computational cost.
Additionally, works like Path Aggregation Network (PANet) [21] extended FPN with bottom-up paths,
enabling improved feature reuse for instance segmentation and detection tasks. Recently, Dynamic
FPN [24] adapted FPN contributions dynamically based on input image requirements, addressing both
efficiency and adaptability. While these approaches provide valuable insights, many require extensive
computational resources or are highly domain-specific, limiting their generalizability. Our work adopts
a simpler, yet effective Gated Fusion strategy, ensuring scalability and efficiency for diverse detection
tasks.
Related Enhancements in One-Stage Detectors: One-stage object detectors such as YOLO[25],

SSD [26], and RetinaNet have been the subject of extensive research and development. SSD (Single Shot
MultiBox Detector) introduced a novel approach to predict object locations and class scores directly
from feature maps, leveraging multiple feature scales for detecting objects of various sizes. However,
its fixed anchor configurations posed challenges for small object detection. YOLOv3 and its successors,
YOLOv4 [27] and YOLOv5 [28], addressed these limitations by employing improved feature extraction
backbones such as CSPNet and introducing techniques like mosaic augmentation to enhance training
data diversity. YOLOv7 [29] and YOLOv8 further explored decoupled head architectures, lightweight
attention modules, and optimized training pipelines to improve accuracy and efficiency. Similarly,
FCOS (Fully Convolutional One-Stage Object Detection) removed the need for anchor boxes altogether,
relying on a center-ness score to predict object locations directly, thus simplifying the pipeline while
maintaining competitive performance. Despite these advances, integrating robust feature attention and
fusion mechanisms, as proposed in our work, remains a critical gap for improving small and occluded
object detection in one-stage detectors.

Our work differentiates itself by integrating Squeeze-and-Excitation blocks with Gated Fusion directly
into RetinaNet’s architecture. By addressing the limitations of both the backbone and FPN, our approach
provides a comprehensive solution for object detection and multiscale feature integration without
incurring significant computational overhead. Additionally, our method uniquely combines adaptive
feature prioritization and gated feature fusion, filling the gap between lightweight design and robust
feature representation.

3. Approach

3.1. Overview of the Proposed Approach

The proposed approach is illustrated in Figure 1, comprising fourmain components: (a) ResNet Backbone,
(b) SE Blocks, (c) Feature Pyramid Network (FPN), (d) G-FPN. This architecture combines SEblock and
the novel G-FPN (Gated Fusion FPN) which contains a gated fusion module to address challenges such
as small object detection, occlusions, and domain-specific variations, resulting in enhanced detection
accuracy and robustness. Unlike a standard FPN that directly passes featuremaps to the classification and
regression heads without additional refinement, G-FPN integrates the Gated Fusion module to generate
an enriched feature map. This additional feature map enhances the multiscale feature representation,



Figure 1: The architecture of the proposed approach that contains four main components: (a) ResNet Backbone,
(b) SE Blocks, (c) Feature Pyramid Network (FPN), (d) G-FPN.

improving detection accuracy by enabling better contextual understanding and feature refinement. The
proposed model consists of the following components:

(a) ResNet Backbone: The ResNet-50 backbone extracts hierarchical feature maps from the input
image, capturing both low-level and high-level representations.

(b) SE Blocks: Squeeze-and-Excitation (SE) block is incorporated into the ResNet-50 backbone after
each major layer group (layer1, layer2, layer3, and layer4). This block enhances the model’s capability to
recalibrate channel-wise feature responses adaptively by modeling dependencies between channels. By
prioritizing informative features and suppressing less relevant ones, SE blocks improve the robustness
of feature representations.

The primary reason for placing SE blocks in ResNet-50 is to enhance hierarchical feature learning
across different layers:

• Early-Layer Enhancement: SE blocks in lower layers focus on improving edge and texture details,
critical for small object detection.

• Mid-Layer Refinement: At intermediate layers, they refine semantic feature representation for
medium-sized objects.

• Deep-Layer Contextualization: In the final layer group, SE blocks emphasize high-level semantic
features, which are essential for addressing occlusions and complex object shapes.

This block integration ensures that features at all scales are adaptively weighted, contributing to
improved multiscale detection performance.

(c) Feature Pyramid Network (FPN): The FPN aggregatesmultiscale features from the ResNet backbone,
enabling robust detection of objects at varying scales.

(d) G-FPN (Gated Fusion FPN): The original FPN aggregates multiscale features without any dynamic
weighting, treating all scales equally. In contrast, G-FPN introduces:

• Dynamic Feature Prioritization: Ensures relevant scales contribute more significantly.
• Enhanced Feature Representation: Combines fused features with original multiscale outputs,
providing richer context.

• Plug-and-Play Flexibility: Can be integrated into various detection architectures without signifi-
cant modification.

By dynamically weighting the contributions of each scale, G-FPN ensures that the most relevant
features are prioritized, improving the model’s ability to handle objects of varying sizes and complexities.

The structure of G-FPN is shown in Figure 2. The Gated Fusion Module is designed to enhance the
integration of multiscale feature maps from the Feature Pyramid Network (FPN), enabling adaptive
fusion based on feature relevance to produce an enriched feature map. It achieves this by employing a
gating mechanism that dynamically adjusts the contributions of individual feature maps to the final
fused representation. Unlike the standard FPN, which aggregates features in a static manner, gated
fusion module incorporates gating mechanisms to modulate the contributions of each scale dynamically.
This ensures a more context-aware and robust feature representation.



Mathematical Formulation Let 𝐹1, 𝐹2, … , 𝐹𝑛 represent the feature maps from 𝑛 levels of the FPN,
where 𝐹𝑖 ∈ ℝ𝐶𝑖×𝐻𝑖×𝑊𝑖 , and 𝐶𝑖, 𝐻𝑖, and 𝑊𝑖 are the channel, height, and width dimensions of the feature
map at level 𝑖. The Gated Fusion Module combines these feature maps as follows:

1. Spatial Alignment: Each feature map is resized to a common spatial resolution, denoted as
(𝐻𝑟, 𝑊𝑟), which corresponds to the resolution of a reference feature map (e.g., the first feature
map, 𝐹1):

̂𝐹𝑖 = Interpolate(𝐹𝑖, size = (𝐻𝑟, 𝑊𝑟),mode=’nearest’),

where ̂𝐹𝑖 is the resized feature map at level 𝑖.
2. Gating Mechanism: For each resized feature map ̂𝐹𝑖, a gating mechanism is applied to compute

the importance weights. The gating function is defined as:

𝐺( ̂𝐹𝑖) = 𝜎 (𝑊2 ∗ ReLU (𝑊1 ∗ ̂𝐹𝑖)) ,

where:

• 𝑊1 ∈ ℝ𝐶×(𝐶/𝑟)×1×1 and 𝑊2 ∈ ℝ(𝐶/𝑟)×𝐶×1×1 are learnable weight tensors.
• 𝑟 is the reduction ratio, which controls the dimensionality reduction in the gating mechanism.
• ∗ denotes convolution, and ReLU(⋅) is the Rectified Linear Unit activation function.
• 𝜎(⋅) represents the sigmoid activation function, which scales the importanceweights between
0 and 1.

3. Feature Weighting: The gated feature map is obtained by element-wise multiplication of the
gating weights and the resized feature map:

̂𝐹gated
𝑖 = 𝐺( ̂𝐹𝑖) ⊙ ̂𝐹𝑖,

where ⊙ denotes element-wise multiplication.
4. Feature Fusion: The final fused feature map is computed by summing the gated feature maps

from all levels:

𝐹fused =
𝑛
∑
𝑖=1

̂𝐹gated
𝑖 .

The gating mechanism adaptively learns the importance of features at each level of the FPN, ensuring
that only the most relevant features contribute to the final fused representation. The interpolation step
aligns the spatial dimensions of all feature maps, enabling effective fusion across scales. The reduction
ratio 𝑟 controls the complexity of the gating mechanism, allowing for efficient computation.

Advantages

• Enables selective emphasis on important features from different levels of the FPN.
• Facilitates multi-scale feature integration, enhancing the network’s ability to capture both fine
and coarse details.

• Reduces the impact of redundant or irrelevant features, improving the overall performance of the
object detection model.

4. Datasets

To evaluate the performance and generalization capability of our proposed model, we conducted
experiments on three datasets: Pascal VOC 2007, Pascal VOC 2012, and the Aqua dataset. These datasets
encompass a range of object categories and challenging conditions, such as underwater visibility and
small object detection, allowing us to demonstrate the versatility and robustness of our enhancements.

1. Pascal VOC 2007



Figure 2: G-FPN architecture

Pascal VOC 2007 [30] consists of 5,000 training images and 4,900 testing images, covering 20 object
categories. We performed an ablation study using subsets of Pascal VOC 2007 to analyze the effectiveness
of our modifications. Initially, we tested the model with 100 images from three classes (person, car, bus)
enabling a focused evaluation of the model’s improvements in a simplified setting. Subsequently, we
increased the dataset to 1,000 images covering four classes (person, car, bus, motorbike) to examine the
scalability and consistency of the enhancements. Finally, the model was evaluated on the complete
Pascal VOC 2007 dataset to assess its generalization capability across diverse object classes and a larger
number of images.

2. Pascal VOC 2012
Pascal VOC 2012 [31] consists of 13,690 training images and 3,422 testing images, providing a more

comprehensive dataset compared to Pascal VOC 2007. This dataset includes additional images and
variations in image conditions, such as changes in illumination, object scale, and background clutter,
allowing us to validate the model’s generalization ability across different distributions. Testing on Pascal
VOC 2012 ensures the robustness of our approach in handling diverse object classes and environmental
variations.

3. Aqua Dataset
The Aqua dataset contains 575 training images and 63 testing images, specifically designed for

underwater object detection. This dataset presents unique challenges, such as blurred objects, low
visibility, and occlusions caused by underwater conditions. These factors often complicate the detection
of marine life, such as fish, which are not only camouflaged but also exhibit irregular shapes and
movements. By applying our model to this dataset, we demonstrate its adaptability and capability to
handle complex environments outside the standard datasets used for object detection.

5. Results

We conducted an ablation study using the Pascal VOC 2007 dataset, progressively analyzing the impact
of SEblock and G-FPN on the baseline RetinaNet model. The study included testing with subsets of
Pascal VOC 2007 (100 images and 1,000 images) and the complete Pascal VOC 2007 dataset to understand
the contribution of each module. Additionally, the complete approach (Model 4) was evaluated on Pascal



VOC 2012 and the Aqua dataset to assess its generalization across different domains and challenging
scenarios. For all three complete datasets, we trained the proposed model five times and calculated the
standard deviation to demonstrate the stability of the results.

The Table 1 presents the mean Average Precision (mAP) results for different configurations:

Model 300 images 1000 images Pascal 2007 Pascal 2012 Aqua dataset
Model 1: Original RetinaNet 41.24 47.09 56.44 53.32 61.64
Model 2: Adding SEBlock 42.52 48.97 57.54 - -
Model 3: Adding Gated Fusion 43.59 46.35 56.83 - -
RetinaGate: Adding SEBlock and Gated
Fusion

45.73 48.54 57.86 54.74 64.18

Table 1
Comparing mAP of the proposed model with the original RetinaNet on various datasets.

Based on the results shown in Table 1, we highlight the following key findings: Pascal VOC 2007
Analysis: For 300 images (3 classes), adding SE blocks alone improved mAP by 1.28%, while G-FPN
alone contributed a 2.35% increase. The addition of SE blocks to the ResNet backbone and G-FPN
improved detection performance incrementally. The proposed model (Model 4) achieved the highest
mAP, showcasing the effectiveness of combining SEblock and G-FPN. Pascal VOC 2012 and Aqua Dataset:
Model 4 was further tested on Pascal VOC 2012 and the Aqua dataset to evaluate generalization across
different domains. The proposed model outperformed the baseline RetinaNet and other configurations,
achieving higher mAP in all scenarios. This highlights its robustness in handling diverse object classes
and challenging conditions, such as underwater environments where objects may appear blurred or
obstructed.

The following table presents the comparison of our proposed approach with are methods across the
Pascal VOC 2007, Pascal VOC 2012, and Aquarium datasets.

Dataset Method mAP

Pascal VOC 2007

RetinaGate (ours) 57.86
FemtoDet [32] 46.31
Deformable Parts Model [33] 45.20
TinyissimoYOLO-v8 [34] 42.30

Pascal VOC 2012
RetinaGate (ours) 54.74
CenterNet [35] 47.00
DETR [36] 54.30

Aquarium Dataset

RetinaGate (ours) 64.18
SCL [37] 34.90
SCAN [38] 54.51
SIGMA [39] 63.60
YOLOv5 [40] 51.62

Table 2
Comparison of mAP values for different datasets and methods.

6. Conclusion

In this paper, we presented RetinaGate, an enhanced RetinaNet-based object detection model incorpo-
rating Squeeze-and-Excitation (SE) blocks and a novel FPN, Gated Fusion FPN (G-FPN). By integrating
SE blocks into the ResNet-50 backbone and introducing G-FPN for adaptive multiscale feature fusion,
our approach effectively addressed challenges such as small object detection, occlusions, and complex
feature integration.

Experimental results across Pascal VOC 2007, Pascal VOC 2012, and the Aquarium dataset demon-
strated the superiority of the proposedmodel compared to baseline RetinaNet and several state-of-the-art



methods. Our results highlight the strength of the G-FPN as a plug-and-play module that can be inte-
grated into other architectures to improve detection performance, particularly in scenarios involving
challenging domains such as underwater environments where objects are often blurred or occluded.
This flexibility and the observed performance gains underline the potential of our proposed enhance-
ments for broader applications in object detection tasks. Future research will focus on further evaluating
the generalizability of the G-FPN across more diverse datasets and exploring its integration into other
backbone architectures to fully leverage its capabilities.
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