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Abstract. Al-based diagnostics demand reliable medical record la-
beling. Despite the advances of few-shot and zero-shot learning, each
specialized medical data collection demands at least some labels that
agree with the feature space and the class distribution of the col-
lection. However, human posteriori classification of existing records
on diagnoses that have not been considered during the original data
acquisition demands effort and expert knowledge. To facilitate hu-
man labor and decrease the required level of expertise, we propose a
workflow that encompasses pairwise comparisons of medical records
and dedicated visualizations for the juxtaposition of record pairs in
the original feature space. We evaluate the potential of new visualiza-
tion schemes in controlled experiments with human volunteers and
we juxtapose the results to those achieved with earlier, much simpler
visualizations.

1 Introduction

Pairwise comparisons are used in machine learning to derive similar-
ity functions that take local proximity between objects into account
[20]. Pairwise comparisons are also used crowdworking to capital-
ize on the fact that humans can discern similarities between objects
with their eyes, in a way that Al still cannot immitate [15], [16], [5].
For example, when called to perform a pairwise comparison among
the three faces in the upper part of Figure 1, humans are likely to
ignore the whiskers, a feature of some importance when comparing
the three faces in the lower part of the same figure. When it comes
to high-dimensional medical records though, human annotators need
more assistance when deciding which features to concentrate on.

In this paper, we investigate the potential of different structured
record visualizations in assisting humans in pairwise comparisons.
We propose a workflow that encompasses a mechanism for triplet
construction from a set of labeled medical records for a binary clas-
sification problem (person has the disease: Y/N), two visualizations
for pairwise comparisons, an experiment design for the evaluation of
these visualizations on volunteers, and a set of evaluation criteria to
assess the potential of each method and its merit in comparison to
simpler visualization mechanisms.
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Our first contribution is the complete workflow, intended to assist
human annotators who do pairwise comparison of structured med-
ical records for the purpose of labeling. Our second contribution
consists of the two presented visualizations, which are intended to
highlight similarities and differences among records in the original
feature space. Our last contribution is the evaluation approach, cover-
ing an experiment that involves human volunteers and a retrospective
comparison to the results of an earlier experiment that used simpler
visualizations.

The paper is organized as follows. We first discuss related work
on pairwise comparisons and on visualization of structured medical
records, focusing on visualization methods for the original feature
space. In section III, we present the elements of our approach, while
in section IV we present the medical data we used, the experiment we
performed with human volunteers and our evaluation criteria. Section
V contains our results and a discussion on them. The last section
summarizes the findings and provides an outlook.

Figure 1. Two pairwise comparisons involving two cats and one muffin
(upper part of the figure), respectively one dog (lower part of the figure).
Image taken from
https://commons.wikimedia.org/wiki/File:Black_and_white_cat_head.jpg

2 Related Work
2.1 Pairwise comparisons

Studied intensively from the machine learning perspective, see e.g.
[10], where the objective is to induce a distance function over the



data space. The human-driven process of finding the two most simi-
lar objects inside a triplet is investigated in psychology, but there the
objective is to acquire insights into human perception [3]. Insights
into whether triplet comparisons performed by human annotators are
indeed exploitable by machine learning algorithms are mostly lim-
ited to the comparison of images [1, 18]. Arguably, pairwise com-
parison in triplets of tabular data records, such as medical instances,
is different from the comparison of image instances. Yao et al. used
pairwise comparisons for the estimation of treatment effects in obser-
vational data [27]: they chose three pairs of instances, one consisting
of the most proximal target instance =; and control instance x, one
consisting of the most remote target instance with respect to x;, and
one consisting of the most remote control with respect to =;. They
then introduced two counteracting metrics on the basis of loss func-
tions, intended to bring similar instances close to each other but not
too close in the representation space.

2.2  Measuring the difficulty of annotation and
labeling tasks

Difficulty of pairwise comparisons of images has been investigated
in [1, 2]. Similarly to our earlier works [7, 15] on pairwise compar-
isons of non-image data. Ahonen et al. [1] used sensors that mea-
sure electrodermal activity. Their results were not conclusive, in the
sense that it did not become evident what makes a comparison diffi-
cult independently of the person who performs the comparison. The
difficulty of pairwise comparisons of non-image objects is less in-
vestigated in general, despite the fact that non-image objects are of
relevance in several application domains, including the annotation of
clinical data. However, there are several investigations on the diffi-
culty of crowdworkers tasks, including labeling tasks and more elab-
orate annotations. Traditionally, ‘difficulty’ (which is not observable)
is modeled on the basis of observable quantities. One of them is ‘du-
ration’, defined in [4] as the time needed to complete a specific task
and used as indicator of task difficulty for a specific crowdworker. An
important indicator is (dis)agreement among crowdworkers, pointing
to task ambiguity [17] or to diverging interpretations of a task [9], i.e.
to inherent task properties independently of a specific crowdworker’s
skills and expertise. In [15] we focused on (dis)agreement as poten-
tial indicator of difficulty: Annotator (dis)agreement was not predic-
tive — neither for difficulty nor for correctness. Furthermore annota-
tors performed pairwise comparisons on triplets that consisted of 10-
dimensional medical instances from the cohort SHIP-2 of [24]. We
found that for some instances proximity across certain dimensions
was misleading in the sense that annotators consistently decided that
a pair of instances inside a triplet were more similar than they truly
were.

2.3 Annotation of medical data

Images, diagnostic texts or structured instances, is a very important
task, for which crowd-working has been applied increasingly and
successfully in recent years [22, 25, 26]. In [26], Wazny et al. list
8 areas of medical applications, where crowdsourcing is being used;
among them, diagnosis, such as assigning scores to tumors. This cor-
responds to the creation of ground truth in existing datasets through
labeling. However, medical annotations go beyond the assignment
of labels or scores. For example, Joshi et al. recruited volunteers
who identified the ‘location’ of emotional episodes in timestamped
data, as well as the duration of these episodes [8]. Studies on the
annotation of medical data follow different directions. They include

the study of the potential of Virtual Reality (VR) technologies as in
[6, 13], the generation of open access datasets [11], the role of anno-
tated data collections in education [23], and ways of semi-automating
the labeling/annotation process. Among the latter, the earlier work
of Nissim et al. [14] highlighted the potential of active learning to
reduce label acquisition cost. More recently, combinations of semi-
supervision and crowdsourcing have become a popular subject of in-
vestigation, see e.g. [19, 21].

3 Workflow for record annotation through
pairwise visual comparisons

3.1 A pie-based visualization

The proposed method was inspired by the solution proposed in [15]
in which the experiment participant was shown two representations:
a tile-based and a line-based. In the first, each triplet is composed
of ten tiles for each risk factor with the numerical values marked as
shade (Figure 2, left box). In the second, the position of the mid-
dle record value for some variables indicates its distance from the
variable values for the other two records (Figure 2, right box). This
solution has been shown to be effective but can be improved using
a new visualization method that does not separate the features from
the others.
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Figure 2. Triplet for low level of difficulty: Old visualization based on
the experiment from [15]

The main idea is to use the pie-based visualization shown in Figure
3. Compared to the old visualization, this is more compact since each
of the ten variables is represented as a slice of the pie. In this way,
three pies are necessary to represent the three subjects A, B, and C of
the experiment. The comparison between subjects is immediate, and
the slices of the pie are position invariant, since the crowd worker is
not biased by the particular arrangement of each variable (there is no
ordering between them).

Figure 3. Triplet for low level of difficulty: New visualization



In both methods, the color palette is assigned by linearly distribut-
ing the colors in the Min-Max interval of the feature values by using a
discrete number of colors for discrete features. 5-values color scales
is used for continuous features, the 2-values color scales is used for
binary features, and the 3-values color scales is used for the ternary
feature.

The resulting color-based triplet assignments are described in Al-
gorithm 1 for the old method and in Algorithm 2 for the new method.

Algorithm number 1 tripletA, tripletB, tripletC

feat € Features m <— min(feat) M < max(feat)

feat is binary bins < 2 feat is ternary bins < 3 bins < 5

Palette < createPalette(bins, m, M) tripletA(feat) <
closer(Palette, tripletA. feat.val)  tripletB(feat) <
closer(Palette, tripletB. feat.val)  tripletC(feat) +—
closer(Palette, tripletC. feat.val) show(Palette)

Algorithm number 1 tripletA, tripletB, tripletC

nFeature < 10 pieA < createpie(nFeature) pieB <«
createpie(nFeature) pieC < createpie(nFeature) k <« 1
F € Features m < min(F) M < mazx(F)

Fis binary bins < 2 F is ternary bins < 3 bins < 5

Palette <« createPalette(bins,m, M) pieA(k) <+
closer(Palette, tripletA. feat.val) pieB(k) —
closer(Palette, triplet B. feat.val) pieC (k) —

%

closer(Palette, tripletC. feat.val) k < k + 1 Palette
createPalette(5,0,1) show(Palette)

In Figure 3, it is possible to understand how easily it can be con-
cluded that instance B is similar to instance A because the right half-
pie of both is equal, as well as the slices representing LDL, CRP and
Alcohol. Instead, in Figure 2, in which the same instances A,B,C are
represented, the comparison is less immediate because the crowd-
worker is led to analyze one variable at a time.

This is even more evident in Figures 4 and 5 which present a less
obvious case. In fact, instance B is still more similar to instance A,
but in this case, the similarities are few and it is not possible to es-
tablish it by directly confronting each variable, but it is necessary
an overall view, and for this reason, pie-based visualization is still
superior.

The last example is presented in Figure 6 and Figure 7 and is very
difficult to assess. Both instances A and C are good candidates and
looking carefully in the pie-based visualization, it is possible to con-
clude that B is more similar to A, even if even if very little.
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Figure 4. Triplet for middle level of difficulty: Old visualization based
on the experiment from [15]

Figure 5. Triplet for middle level of difficulty: New visualization
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Figure 6. Triplet for high level of difficulty: Old visualization based on
the experiment from [15]

4 Our Evaluation Workflow
4.1 The triplets of the experiment

In this study, we investigate the potential of different visualization
schemes for pairwise comparison of medical records.

As a follow-up of the experiment in [15] we asked 2 experts to an-
notate the new visualization to assess whether an individual is more
similar to a healthy or a diseased individual using hepatic steatosis as
an outcome. Both experts conduct research on active learning, pre-
diction and classification. They do not know the SHIP dataset. Each
expert was asked to annotate 30 annotation tasks + 3 tasks of different
levels of difficulty. Furthermore, they have to express the perceived
difficulty for the annotation of each triplet by choosing one of the
following four answers: “very certain", “rather certain", “rather un-
certain", and “very uncertain".

For choosing the triplets we used the dataset as presented and de-
scribed in [15]. There we randomly selected 90 records out of 852
individuals of SHIP-2. These are categorized into the following three
categories: “no hepatic steatosis" (liver fat fraction < 5.0%, n =501),
“mild hepatic steatosis" (5.0% < liver fat fraction <14%, n = 238),
and “moderate to severe hepatic steatosis" (liver fat fraction > 14%,

Figure 7. Triplet for high level of difficulty: New visualization



n = 113) [12]. More specific we selected 45 individuals from the
class “no hepatic steatosis" and 45 from the class “moderate to severe
hepatic steatosis" and split this two subsamples into three groups of
15 individuals. For each subject, ten risk factors of hepatic steato-
sis are reported: age, sex, alanine-aminotransferase (ALAT), low-
density lipoproteine (LDL) cholesterol, alcohol consumption, hyper-
tension, beta-blocker intake, type 2 diabetes mellitus, smoking status,
and c-reactive protein (CRP).

4.2  Evaluation Criteria

Our scenario is a controlled pairwise comparison experiment, in
which we want to find out which features catch the participants’ eye
under each configuration and which configuration helps them most
in finding the ‘good features’. The configurations are (a) our new
color-based one and (b) the baseline used in the article of [15].

To compare the new graphic model with the article of [15], we
compute correctness, and then we run the experiment with the same
triplets. We compute the average correctness as performance indica-
tors to evaluate the new graphic model for different degrees of task
difficulty.

To evaluate the performance of both methods, we define the fol-
lowing evaluation criteria:

e Correct classifications
e Score, to compare the two visualizations: How often one was cor-
rect under each visualization

In addition, we present the uncertainty of experts for the new vi-
sualization.

5 Findings
5.1 Findings with the proposed visualization

In Table 1 we show the annotation of the two experts. They differ
in the annotation in 6 tasks (bold marked). Furthermore, the column
“Uncertainty" shows the perceived difficulty per triplet.

As depicted both experts are “rather certain” in the annotation: 14
and 12 times out of 30. “Rather uncertain" they are in 9 and 10 triplets
out of 30. On 4 and 6 triplets, they are “very uncertain". The experts
gave the lowest response for “very certain": Only 3 and 2 times out
of 30 triplets they chose this answer.

It is remarkable that the annotation of the triplets for easy, medium
and difficult differ. T11 represent the easy triplet - here the difficulty
changes slightly. For middle difficulty the annotation changes com-
pletely. Under T18, both experts annotated incorrectly. Later on, they
annotated correctly when they annotated this task again. For the dif-
ficulty triplet the perceived difficulty changes from very uncertain to
rather uncertain. The annotation remains the same, but incorrect.

5.2 Comparison to the baseline visualization

In Table 2 we juxtaposed how the experts annotated the triplets for
both visualizations. For better comparability we removed one expert
annotation for the old version. This expert is an epidemiologist and
created the dataset.

The annotations differ in 14 out of 30 tasks and are marked in bold.
The new visualization was annotated slightly better than the old vi-
sualization. We have better correctness for the easy triplets, similar
correctness for the medium ones, and also similar for the difficult
ones. On average, the old visualization was correctly annotated 0.50,

Correctness Uncertainty
Triplet | Expert 1 | Expert2 | Expert 1 Expert 2
TO1 yes no rather uncertain | rather certain
TO02 yes yes rather uncertain | rather uncertain
TO3 yes yes rather certain rather uncertain
T04 no no very certain very certain
TOS yes yes rather certain rather certain
TO6 yes yes rather uncertain | rather uncertain
TO7 yes no rather uncertain | rather uncertain
TO8 no no rather certain rather certain
T09 no no very certain very certain
T10 yes yes very certain rather uncertain
TI11 yes yes rather certain rather certain
TI12 no no rather uncertain | very uncertain
T13 yes yes rather certain rather certain
T14 no no rather certain rather certain
TI15 no no rather certain rather certain
T16 yes yes very uncertain rather uncertain
T17 yes yes rather certain very uncertain
T18 yes yes very uncertain very uncertain
T19 yes no rather certain rather certain
T20 no no rather uncertain | rather certain
T21 yes yes rather uncertain | rather certain
T22 yes yes rather certain rather uncertain
T23 no yes rather uncertain | rather uncertain
T24 yes yes rather uncertain | rather certain
T25 no yes rather certain rather certain
T26 yes yes very uncertain very uncertain
T27 no no rather certain rather uncertain
T28 no no rather uncertain | very uncertain
T29 no yes rather certain rather certain
T30 no no very uncertain very uncertain
T31 yes yes very uncertain rather certain
T32 no no rather uncertain | very uncertain
T33 no no rather certain rather certain
Table 1. Results of the expert-annotation for each triplet. T31, T32 and

T33 represent the triplets chosen for easy, medium and difficult.

the new visualization on average 0.57. This could also be related to
the choice of experts. In the old visualization, a physician annotated
the triplets and another expert knew the SHIP-2 dataset. In contrast,
the two new experts for the new visualization have no medical back-
ground and do not know the data set. We are not trying to find the
most globally influential variable. Since the important variables vary
per triplet. Therefore, each variable has the same position in each
triplet.

6 Conclusion and Future Work

In this work, we investigated the potential of different visualiza-
tion schemes of medical records. We elaborated on an experiment
whether a new visualization leads to a better annotation, based on
correctness and investigated this with expert annotation on a previ-
ous visualization. Thereafter, we will start investigating the role of
stress as a confounder. We will also expand the experiment to non-
experts and focus on uncertainty, to further improve the visualization
and thus get better results in the annotation. Moreover, we will inves-
tigate which features are affecting correctness and how to combine
with semisupervised pairwise comparisons.

6.1 Further possibilities for data annotation

In addition to various visualization methods, annotation can also take
place on the basis of raw data, for example as tabular data (see Ta-
ble 3). Table 3 shows a simple triplet. The middle, B, instance is



Triplet Correctness under Correctness under instance | sepal length | sepal width | petal length | petal width | class
the old visualization | the new visualization A 4.7 32 1.3 0.2 Iris-setosa
T01 1 0.5 B 4.6 3.1 1.5 0.2 Iris-setosa
T02 0.5 1 C 6.1 3.0 4.6 14 Iris-versicolor
TO03 0 1
%))g 8 5 (1) Table 3. easy triplet based on iris dataset
T06 1 1
;g; 8.5 8'5 instance | sepallength | sepal width | petal length | petal width | class
T09 0 0 A 5.0 34 1.5 0.2 Iris-setosa
T10 0 1 B 6.4 2.9 4.3 1.3 Iris-versicolor
Ti1 1 1 C 5.1 2.5 3.0 1.1 Iris-versicolor
T12 0.5 0
T13 1 1 Table 4. difficult triplet based on iris dataset
T14 0 0
T15 0.5 0
T16 1 1 01ZZ0403), the Ministry of Cultural Affairs as well as the Social
¥}; gg i Ministry of the Federal State of Mecklenburg-West Pomerania.
T19 0 0.5
T20 1 0
i | | References
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T23 1 0.5 K. Puolamaki. S1: Analysis of electrodermal activity recordings in pair
T24 1 1 programming from 2 dyads. PLoS One. Retrieved from http://journals.
T25 05 0.5 plos. org/plosone/article/asset, 2016.
T26 0.5 1 [2] E. Amid and A. Ukkonen. Multiview triplet embedding: Learning at-
T27 0 0 tributes in multiple maps. In International Conference on Machine
T28 0 0 Learning, pages 1472-1480, 2015.
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1 means *both experts assigned the middle instance correctly’, 0 means ’both (5):815-841, 2019.
experts assigned the middle instance incorrectly’ and 0.5 means ’the two [5] A.Holzinger. Interactive machine learning for health informatics: when

experts disagreed’.

to be assigned whether it is more similar to the A instance or C in-
stance. Similar variables are marked in blue (B more similar to A)
or orange (B more similar to C). In this example, the IRIS data set
consists of only a few variables, so that a more manageable assess-
ment can be made. In this example, annotators would look at how
many matches there are per variable (the class is not visible) and
then decide whether the B instance is more similar to the A instance
or to the C instance. A rather more difficult example is in Table 4.
This is also based on the IRIS data set, but the assignment is made
more difficult by the similarity of the A and C instances. The variable
“sepal lengh” is not unique in this example. Annotators could there-
fore possibly ignore this variable for the decision-making process. In
the triplet as a whole, the B instance is slightly more similar to the
C instance than to the A instance. As soon as a variable is weighted
more importantly, this decision could either strengthen the decision
or lead to a different decision. With data sets that contain more vari-
ables, such as the mushroom data set, it is very difficult to recognize
individual variables separately. Our suggestion would be to hide the
variables where the values are identical so that a better assignment
can take place. This and the optimal number of variables per triplet
will be investigated in future experiments.

Funding

SHIP is part of the Community Medicine Research net of the Uni-
versity of Greifswald, Germany, supported by the Federal Ministry
of Education and Research (grants no. 01229603, 01270103, and

do we need the human-in-the-loop? Brain Informatics, 3(2):119-131,
2016.

[6] A.Huaulmé, F. Despinoy, S. A. H. Perez, K. Harada, M. Mitsuishi, and

P. Jannin. Automatic annotation of surgical activities using virtual real-

ity environments. International journal of computer assisted radiology

and surgery, 14(10):1663-1671, 2019.

N. Jambigi, T. Chanda, V. Unnikrishnan, and M. Spiliopoulou. As-

sessing the difficulty of labelling an instance in crowdworking. In 2nd

Workshop on Evaluation and Experimental Design in Data Mining and

Machine Learning@ ECML PKDD 2020, 2020.

[8] A. A. Joshi, M. Chong, J. Li, S. Choi, and R. M. Leahy. Are you
thinking what i’m thinking? synchronization of resting fmri time-series
across subjects. Neurolmage, 172:740-752, 2018.

[9] S. Kairam and J. Heer. Parting crowds: Characterizing divergent inter-
pretations in crowdsourced annotation tasks. In Proceedings of the 19th
ACM Conference on Computer-Supported Cooperative Work & Social
Computing, pages 1637-1648, 2016.

[10] M. Kleindessner and U. von Luxburg. Kernel functions based on triplet
comparisons. In Advances in neural information processing systems,
pages 6807-6817, 2017.

[11] E. E. Kpokiri, R. John, D. Wu, N. Fongwen, J. Z. Budak, C. C. Chang,
J. J. Ong, and J. D. Tucker. Crowdsourcing to develop open-access
learning resources on antimicrobial resistance. BMC infectious dis-
eases, 21(1):1-7, 2021.

[12] J.-P. Kiihn, D. Hernando, A. Muiioz del Rio, M. Evert, S. Kan-
nengiesser, H. Volzke, B. Mensel, R. Puls, N. Hosten, and S. B. Reeder.
Effect of multipeak spectral modeling of fat for liver iron and fat quan-
tification: correlation of biopsy with mr imaging results. Radiology, 265
(1):133-142, 2012.

[13] O.Legetth,J. Rodhe, S. Lang, P. Dhapola, M. Wallergérd, and S. Soneji.
Cellexalvr: A virtual reality platform to visualize and analyze single-
cell omics data. Iscience, page 103251, 2021.

[14] N. Nissim, M. R. Boland, N. P. Tatonetti, Y. Elovici, G. Hripcsak,
Y. Shahar, and R. Moskovitch. Improving condition severity classifi-
cation with an efficient active learning based framework. Journal of
biomedical informatics, 61:44-54, 2016.

[15] A. Rother, U. Niemann, T. Hielscher, H. Volzke, T. Ittermann, and
M. Spiliopoulou. Assessing the difficulty of annotating medical data

[7

—



[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

in crowdworking with help of experiments. PloS one, 16(7):0254764,
2021.

A. Rother, T. Ittermann, and M. Spiliopoulou. Semi-supervised learn-
ing with pairwise instance comparisons for medical instance classifica-
tion. In International Symposium on Intelligent Data Analysis. Springer,
2025. to appear.

M. Schaekermann, E. Law, K. Larson, and A. Lim. Expert disagreement
in sequential labeling: A case study on adjudication in medical time
series analysis. In SAD/CrowdBias@ HCOMP, pages 55-66, 2018.

S. Sharifi Noorian, S. Qiu, U. Gadiraju, J. Yang, and A. Bozzon.
What should you know? a human-in-the-loop approach to unknown un-
knowns characterization in image recognition. In Proceedings of the
ACM Web Conference 2022, pages 882-892, 2022.

W. Shi, V. S. Sheng, X. Li, and B. Gu. Semi-supervised multi-label
learning from crowds via deep sequential generative model. In Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1141-1149, 2020.

V. Simard, M. Ronnqvist, L. Lebel, and N. Lehoux. A method to clas-
sify data quality for decision making under uncertainty. ACM Journal
of Data and Information Quality, 2022.

P. A. Traganitis and G. B. Giannakis. Bayesian semi-supervised crowd-
sourcing. arXiv preprint arXiv:2012.11048, 2020.

J. D. Tucker, S. Day, W. Tang, and B. Bayus. Crowdsourcing in medical
research: concepts and applications. PeerJ, 7:¢6762, 2019.

M. van Deursen, L. Reuvers, J. D. Duits, G. de Jong, M. van den Hurk,
and D. Henssen. Virtual reality and annotated radiological data as ef-
fective and motivating tools to help social sciences students learn neu-
roanatomy. Scientific Reports, 11(1):1-10, 2021.

H. Volzke, J. Schossow, C. O. Schmidt, C. Jirgens, A. Richter,
A. Werner, N. Werner, D. Radke, A. Teumer, T. Ittermann, et al. Cohort
profile update: The study of health in pomerania (ship). International
Jjournal of epidemiology, 2022.

C. Wang, L. Han, G. Stein, S. Day, C. Bien-Gund, A. Mathews, J. J.
Ong, P.-Z. Zhao, S.-F. Wei, J. Walker, et al. Crowdsourcing in health and
medical research: a systematic review. Infectious diseases of poverty, 9
(1):1-9, 2020.

K. Wazny. Applications of crowdsourcing in health: an overview. Jour-
nal of global health, 8(1), 2018.

L. Yao, S. Li, Y. Li, M. Huai, J. Gao, and A. Zhang. Representa-
tion learning for treatment effect estimation from observational data.
Advances in Neural Information Processing Systems, 31:2633-2643,
2018.



