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Abstract. Accurate One-Repetition Maximum (1-RM) assessment
is crucial in strength sports for optimizing training loads, monitoring
progress, and minimizing injury risk. Traditional assessment meth-
ods, whether through direct testing or mathematical estimation, are
often time-consuming, invasive, or prone to significant inaccuracies.
This study proposes a novel, non-invasive approach to 1-RM predic-
tion using only video recordings of exercise execution. By leveraging
BlazePose for pose estimation and Spatio-Temporal Graph Convolu-
tional Networks (ST-GCNs) for modeling joint dynamics, we extract
a movement representation termed Performance, a combination of
component and latent features indicative of physical exertion. We ac-
curately predict each squat attempt’s relative load intensity (%1-RM)
based on this representation. Our method introduces a new paradigm
in strength evaluation, integrating biomechanics and deep learning to
enable scalable, contactless feedback in real-world training settings.
To support future research, we also provide a new dataset of weighted
back squats annotated with biomechanical data and metadata. To our
knowledge, this is the first application of ST-GCNs to predict 1-RM
in strength sports, offering a safer and more personalized alternative
to conventional testing methods.

1 Introduction

In recent years, strength sports have increasingly embraced data-
driven approaches to monitor, analyze, and enhance athlete perfor-
mance. One of the most critical metrics in this domain is the One-
Repetition Maximum, the maximal load an athlete can lift for a sin-
gle repetition of a specific exercise. Accurate determination of the
1-RM plays a pivotal role in prescribing training intensities, tracking
progress, and mitigating injury risk. Direct methods carry a height-
ened risk of injury and fatigue, while indirect approaches usually lack
accuracy due to their reliance on simplified, general-purpose models.

Concurrently, the fields of computer vision and deep learning have
made substantial advances in modeling human movement. In particu-
lar, graph-based neural architectures such as Spatio-Temporal Graph
Convolutional Networks have demonstrated exceptional capability in
capturing complex motion patterns by treating the human body as
a dynamic graph of interconnected joints. These models have been
successfully applied to tasks such as action recognition and rehabil-
itation assessment, but their application in strength training remains
largely unexplored.
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This study bridges that gap by introducing a novel, video-based
method for predicting relative load intensity during the back squat.
Our approach defines Performance as a multifaceted representa-
tion of exercise execution, combining kinematic data extracted via
BlazePose and structured analysis through ST-GCN. By modeling
movement quality over time, we aim to infer how close a submax-
imal effort is to an individual’s actual 1-RM, without the need for
maximal lifting attempts.

In this work, we propose the task of 1-RM prediction based purely
on visual input, using spatio-temporal graph-based modeling of hu-
man motion. To support this task, we introduce a new, annotated
dataset of weighted back squats that combines visual pose data with
contextual training information, which we will make publicly avail-
able to encourage future research. Finally, we demonstrate that our
approach not only offers a safer alternative to direct testing, but also
achieves superior accuracy compared to traditional estimation meth-
ods.

2 Background
2.1 One-Repetition Maximum Overview

The One-Repetition Maximum is a parameter primarily used in
strength sports that defines the maximum load a person can lift in a
single repetition of a given exercise [20, 11]. It serves as a key indica-
tor for assessing muscular strength and monitoring training progress.
Furthermore, accurate measurement allows for adjusting training in-
tensity to individual capabilities and training goals. This approach
ensures optimal muscle stimulation while minimizing the risk of in-
jury [27, 13, 12].

The 1-RM is used primarily in sports such as powerlifting,
Olympic weightlifting, and strongman competitions. Additionally, it
is also utilized in the physical preparation of athletes in disciplines
such as athletics, team sports, and combat sports. In these disciplines,
high levels of muscular strength may contribute to improved speed,
explosiveness, and overall physical performance [14, 15].

The 1-RM can be assessed in two ways: directly - by performing a
maximum load test, or indirectly - by estimating it using submaximal
loads, i.e., sufficiently heavy but below the maximal capacity.

2.2 Direct Method

In the environment of strength athletes and enthusiasts, the 1-RM
is most commonly determined directly by performing a maximum



load test. Due to the nature of this measurement, the method is also
referred to as a trial-and-error approach.

The procedure for a 1-RM test follows a standardized protocol.
Initially, the participant performs a general warm-up tailored to their
individual needs and musculoskeletal capabilities. This is followed
by a specific warm-up in the target strength exercise (e.g., the back
squat). In subsequent attempts, the participant gradually increases the
load, performing increasingly heavier sets with a decreasing number
of repetitions. Initially, sets may consist of 3—5 repetitions with mod-
erate weights, while in the final sets only a single repetition is per-
formed. Several minutes of rest are taken between attempts to allow
for full muscle recovery. The test is concluded when the participant
is unable to complete a single repetition correctly. The highest load
lifted with proper technique is recorded as the 1-RM result.

The traditional 1-RM test is considered the most accurate method
for assessing an individual’s maximal strength and is relatively easy
to implement under controlled conditions. However, it also comes
with notable drawbacks: it increases the risk of injury places signif-
icant strain on the nervous system, and can negatively impact health
in underprepared individuals. Additionally, the procedure is time-
consuming, requires careful planning and warm-up, and may be psy-
chologically demanding, especially for less experienced athletes.

2.3 Indirect Method

An alternative to the 1-RM test is the use of indirect methods, which
aim to assess an athlete’s muscular strength using submaximal loads.
Estimation of the 1-RM parameter is based on a low-complexity
mathematical model that describes the relationship between load,
number of repetitions, and maximal muscular strength.

Initially, the testing procedure may resemble the direct 1-RM test
— the athlete performs a warm-up and gradually increases the load
while simultaneously reducing the number of repetitions. This time,
however, the athlete stops at a submaximal load. With an appropri-
ately selected weight, the athlete performs the maximum number
of repetitions possible while maintaining proper exercise technique.
Based on the results obtained, the 1-RM parameter is estimated using
established mathematical models.

Table 1. Formulas from selected studies commonly used to estimate the
1-RM based on submaximal load (w) and number of repetitions (1)
performed with that load.

Author Formula
Epley [10] w(l tr,%)
Brzycki [4] W
Lombardi [17] wr9-1

Naclerio et al. [23]
Mayhew et al. [21]
O’Conner et al. [24]

w(0.9516—0.021r)—1
w(0.522 + 0.419¢0-0557)—1
w(1 4 0.0257)

The indirect method estimates 1-RM using submaximal loads, of-
fering a safer and more accessible alternative to direct testing by
reducing injury risk, minimizing strain on the nervous system, and
requiring less time and fewer resources. It can also ease psycholog-
ical stress, as the loads used resemble regular training intensities.
However, this method is generally less accurate, relying on simpli-
fied predictive models rather than actual maximal performance. Its
effectiveness often depends on the athlete’s training background and
the specific formula used, which can limit its generalizability and
introduce variability in results.

While 1-RM remains a fundamental measure of strength, both di-
rect and indirect assessment methods have notable trade-offs in terms

of accuracy, safety, and practicality. Therefore, the following section
focuses on data-driven approaches and deep learning methods, which
motivated us to further investigate this research problem and conduct
our own analyses.

3 Related Works
3.1 Pose Estimation for Strength Sports

Markerless human pose estimation has played a key role in recent
efforts to analyze athletic performance, particularly in strength train-
ing. Deep learning models such as OpenPose and BlazePose have en-
abled reliable extraction of skeletal keypoints from video, supporting
automated analysis of exercises like the squat [5, 19, 3, 32, 7].

3.2 Graph Convolutional Networks in Human Motion
Analysis

Building on this foundation, researchers have explored graph-based
neural networks that move beyond raw keypoints to model the hu-
man body as a structured graph. Yan et al. [31] pioneered the Spatio-
Temporal Graph Convolutional Network for skeleton-based action
recognition, where each joint is treated as a graph node and spa-
tial-temporal connections are modeled via graph convolutions. This
design captures inter-joint dependencies over time, making it par-
ticularly effective for complex, coordinated motions. Compared to
sequential models like LSTMs or CNNs, GCNs more effectively
encode biomechanical structure and have been widely adopted for
movement classification, physical therapy assessment, and rehabili-
tation tasks [16, 33, 22, 8]. For example, Deb et al. [8] used a variant
of ST-GCN with self-attention to evaluate physical therapy exercises,
outperforming prior CNN- and LSTM-based approaches on datasets
like KIMORE and UI-PRMD [6, 29].

3.3 Squat Technique Analysis

A representative use case of these methods is back squat assessment,
where researchers have aimed to classify technique and detect move-
ment errors using pose data. Ogata et al. [25] proposed one of the
earliest vision-based squat evaluation methods, converting 3D joint
coordinates into distance matrices and analyzing them with a 1D
CNN. Building on this, Youssef et al. [32] applied BlazePose and
deep learning to classify squat quality from video with high accu-
racy, effectively replicating coach-like evaluations based on move-
ment cues such as knee tracking or hip depth.

3.4 Load-Velocity Relationship

Pose estimation thus provides a strong kinematic foundation for eval-
vating lifting mechanics. Integrating ST-GCN is a natural progres-
sion, as it enables modeling of joint coordination throughout the
squat motion. Recent studies have used such models to detect er-
rors and provide feedback in home fitness applications [9, 1]. Our
work follows this trajectory, focusing specifically on back squats,
and extends it by predicting 1-RM. Directly testing 1-RM can be
risky or impractical, so it is often estimated from submaximal lifts.
Velocity-based training relies on the established inverse relationship
between lift velocity and load: as the lifted weight increases, move-
ment speed decreases in a predictable manner [26, 30, 28]. This prin-
ciple underlies many sensor and wearable-based methods that esti-
mate 1-RM through bar speed. For example, Balsalobre-Fernandez
et al. [2] demonstrated that both linear models and neural networks
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Visualization of the proposed 1-RM prediction pipeline based on submaximal Performance. Pose data from video and encrypted personal data are

preprocessed and passed to a regression model based on spatio-temporal graph convolutions, producing an estimate of the 1-RM.

can accurately predict bench press 1-RM from a few submaximal
lifts. Recently, smartphone-based video systems have achieved com-
parable accuracy to hardware-based sensors when tracking barbell
motion during squats [26]. Despite these advances, most indirect 1-
RM prediction approaches rely on isolated features such as bar ve-
locity or repetition count, without leveraging full-body movement
data. Our method addresses this gap by using spatio-temporal pose
sequences—extracted with BlazePose and modeled via ST-GCN, to
estimate the relative intensity of squat attempts based on whole-body
motion patterns.

4 Proposed Method
4.1 Performance

The starting point for improving the quality of 1-RM estimation lies
in prediction based on Performance, understood as the execution pat-
tern of a full set or a single repetition of a selected exercise.

We define Performance as a set of features that shape the over-
all quality of the attempt and provide insight into an athlete’s max-
imal muscular strength. These features can be categorized into two
groups: component and latent. Component features refer to the exter-
nally visible aspects of exercise execution, such as movement veloc-
ity, body trajectory, and the athlete’s stability during the lift. These
are typically extracted from video footage and represent the kine-
matic properties of the motion. In contrast, latent features encom-
pass internal or non-visible aspects that influence Performance, such
as training experience, athlete’s skill level, or the specifics of their
training program. These are generally obtained through a personal
data acquisition form and are not directly inferable from visual ob-
servation.

4.2  Methodology Workflow

Performance analysis requires a well-structured and carefully de-
signed workflow, divided into several distinct stages: Below, we
present our proposed sequence of steps, with the complete workflow
illustrated in Figure 1.

1. Data Collection: Collection of video recordings of the athlete per-
forming sets of repetitions with submaximal loads - component
features. Additional personal information is gathered via a per-
sonal data acquisition form - latent features.

2. Raw Data Processing: The video recordings are processed using
the BlazePose model [3] to estimate body posture. The resulting
data represent joint coordinates changing over time during the ex-
ercise. In parallel, personal data are encrypted to ensure privacy
and security.

3. Data Concatenation: All acquired data are concatenated into a
unified structure to enable further processing.

4. Data Preparation: All inputs are transformed into a consistent
numerical format and imputed where necessary. The data are then
normalized and structured according to the input requirements of
the prediction model.

5. Model Inference: A model based on ST-GCNs analyzes the struc-
tured data and predicts the relative load intensity, i.e., the percent-
age of One-Repetition Maximum lifted by the athlete in the given
recording.

6. 1-RM Estimation: Based on the predicted relative intensity and
the actual weight used during the recorded attempt, the athlete’s
1-RM value is estimated.

4.3 Pose Estimation

A key component of the proposed method is accurate human pose es-
timation from video, which serves as the basis for analyzing move-
ment patterns during strength exercises. We employ the BlazePose
model, following the findings from recent studies [3, 7, 32], which
by default extracts 33 anatomical landmarks per frame. This mark-
erless solution is optimized for real-time applications and provides
a reliable skeletal representation of the athlete during the squat. The
topology of the default 33 keypoints is illustrated in Fig. 2 a.
BlazePose employs a two-stage architecture consisting of a detec-
tor and a tracker, optimized for high-throughput, low-latency infer-
ence. The detector locates the full-body region of interest, while the
tracker estimates landmark positions using a lightweight regression-
based model. The system combines heatmap-based localization for
improved spatial accuracy with direct coordinate regression to main-
tain speed. This hybrid approach enables robust performance even on
mobile and edge devices, making BlazePose particularly well suited
for biomechanical applications in real-world training environments.
In our pipeline, BlazePose processes each frame to generate a se-
quence of 3D coordinates, yielding a spatio-temporal tensor of shape
T x N x C, where T is the number of frames, N the number of
keypoints, and C' the coordinate dimensions. These outputs serve as



the structural foundation for graph-based modeling, enabling the next
stage: relational and temporal analysis of joint movements using ST-
GCN.
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Figure 2. The figure shows the topology of keypoints: the 33 default
keypoints used by the BlazePose model [3] (a); on the right, the 19
customized keypoints used in the experiment (b).

4.4  Spatio-Temporal Graph Convolutional Networks

To analyze full-body movement during a lift, we adopt Spatio-
Temporal Graph Convolutional Networks as introduced by [31]. This
model treats the human body as a dynamic graph, where joints are
nodes and anatomical connections are edges. Temporal edges cap-
ture motion across time, allowing for simultaneous modeling of spa-
tial relationships and movement dynamics.

As demonstrated in [8, 32], ST-GCN models outperform sequen-
tial or CNN-based approaches in motion quality assessment due to
their ability to represent joint connectivity explicitly. Motivated by
these studies and supported by initial experiments with various ar-
chitectures, we selected the ST-GCN-based approach as the primary
framework for our method. In our implementation, the model is tai-
lored for regression, predicting the relative intensity of each lift based
on pose sequences.

This graph-based approach ensures robust capture of movement
patterns critical for estimating exertion level, offering a natural fit for
analyzing complex multi-joint actions like the back squat.

5 Dataset

To effectively analyze Performance and predict the 1-RM parame-
ter, a deep neural network must be trained on a suitably designed
dataset. However, there are significant challenges in this regard. First,
as we have shown, there is a lack of existing research that explores
1-RM prediction using neural networks based on video recordings.
Second, the assumptions required to construct a reliable dataset for
this task are difficult to meet. Consequently, no publicly available
datasets fully satisfies the needs of this study. For these reasons, we
were compelled to develop and annotate our own dataset of weighted
back squats. We intend to release this dataset publicly to facilitate fu-
ture research on video-based strength estimation.

5.1 Data Collection

Data were collected from two primary sources: video recordings and
a personal data acquisition form. Video data provided observable,
kinematic features of movement execution, while the questionnaire
captured latent variables such as training experience and background

information. The video recordings were obtained during maximum
effort back squat sessions, and the forms included demographic and
training-related details .

A total of 15 volunteers participated in the study, including 11
males and 4 females. The collected data span a diverse range of
attributes such as age, sex, height, body weight, training experi-
ence, strength level, equipment accessibility, training program type,
weekly training frequency, and participation in powerlifting compe-
titions.

The video recording protocol adhered to standard 1-RM testing
procedures, as described in Section 2. Each participant completed
warm-up sets, progressively heavier squats, and single-rep attempts
up to failure, defined as an inability to complete a repetition with
proper technique. This generated a rich dataset of annotated squat
recordings, including both submaximal and maximal efforts. Af-
ter a short rest, participants also performed an AMRAP (As Many
Repetitions As Possible) set at 75% of their current 1-RM, increas-
ing sample diversity with higher-repetition submaximal examples.
These sets additionally served as a dedicated test subset for evaluat-
ing traditional indirect estimation methods, with results summarized
in Table2.

Table 2. Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE) for models from Table 1 based on AMRAP set. Lower values
indicate better estimation accuracy.

Author RMSE MAE R?

Brzycki [4] 16.8074 122050 0.8597
O’Conner etal. [24]  11.4115  10.4050  0.9638
Lombardi [17] 10.9727  9.7550  0.9834
Epley [10] 93987  7.0786  0.9491
Naclerio et al. [23] 8.4966  7.8721  0.9582
Mayhew et al. [21]  7.0359  6.4364  0.9718

From a technical standpoint, each squat session was recorded us-
ing three cameras placed at fixed positions: front view, left 45° an-
gle, and right 45° angle. All cameras were mounted on tripods at hip
height relative to the participant to ensure consistency and minimize
distortion. Video footage was captured at a frame rate of 30 frames
per second (FPS), providing sufficient temporal resolution for de-
tailed motion analysis.

5.2 Raw Data Processing

We began the raw data processing phase by segmenting the video
recordings into short clips, each containing a single repetition of the
back squat. This step resulted in a total of 1322 unique samples. Fol-
lowing expert review, 1255 of these repetitions were deemed techni-
cally valid and met the criteria for successful execution. Only these
verified attempts were included in the modeling phase for 1-RM pre-
diction.

The next step involved applying pose estimation using the
BlazePose model, as previously discussed. Given the model’s default
set of 33 keypoints and the specific focus of our study we simplified
the keypoint structure. Multiple landmarks representing each limb
and the head were aggregated into a single point per segment, as
upper-limb and head movement have limited relevance to squat Per-
formance. However, we identified a key limitation of the BlazePose
model: the lack of explicit estimation for the center of the hips and
the torso. To address this, we introduced two custom keypoints rep-
resenting the approximate center of the pelvis and the trunk, as these
areas play a crucial role in assessing squat mechanics. The topology
of the resulting 19-keypoint configuration is illustrated in Fig. 2 b.



As a result, we obtained a complete dataset ready for analysis and
experimentation. The dataset is publicly available at the following
hidden for double-blind reviewing. It is distributed in three formats:
raw video recordings, cropped and labeled video clips, and files con-
taining pose estimations as described in Section 4. Each version also
includes encrypted participant metadata collected via the personal
data acquisition form.

6 Experiment
6.1 Model Architecture

The predictive architecture developed in this study was specifically
designed to estimate the relative load intensity of a back squat at-
tempt based on both submaximal and maximal loads. The model
consists of three main components: the Squat Encoder, the Con-
text Encoder, and the Regression Head, which collectively enable
the analysis of squat Performance by incorporating observable kine-
matic features and user-specific contextual data. The overall model
architecture is illustrated in Figure 3.

The Squat Encoder serves as the core module for processing
the component features of Performance, as described in Section 4.
These features are extracted from pose sequences obtained using the
BlazePose model, which outputs 3D keypoint coordinates for each
frame of the video. Each pose sequence is represented as a spatio-
temporal graph, where joints are modeled as nodes and anatomical
or temporal relationships are represented by edges. This graph is then
passed through a ST-GCN, which captures both spatial and temporal
dependencies in the motion data.

The implemented model includes ten consecutive ST-GCN blocks
with progressively increasing channel sizes of 64, 128, and 256 (Fig-
ure 3). Each block applies a spatial graph convolution followed by
a temporal convolution, allowing the network to analyze movement
over an extended time window. This facilitates the detection of tem-
poral patterns such as rhythm and control throughout the squat. To
define neighborhood relations within the graph, we tested multiple
partition strategies, including uniform, distance-based, and spatial
configurations, using either the thorax or pelvis as the skeleton cen-
ter [31]. These strategies determine how node neighborhoods are
grouped during convolution, enabling the model to emphasize dif-
ferent anatomical or directional aspects of the movement depending
on the configuration. The final ST-GCN block is followed by global
average pooling, which compresses the entire sequence into a fixed-
length vector of size 256. This vector serves as a compact and infor-
mative representation of the component features extracted from the
movement.

In parallel, the Context Encoder processes the latent features of
Performance, as defined in Section 4. Such features provide valu-
able context that complements the visual motion data and support
the Squat Encoder. The Context Encoder is implemented as a fully
connected neural network composed of three linear layers with ReLU
activation functions and dropout regularization. The layers have out-
put sizes of 64, 128, and 256, respectively (Figure 3). The final output
is a vector that encodes the athlete’s profile and aligns dimensionally
with the output of the Squat Encoder.

The output vectors from the encoders are concatenated and passed
to the Regression Head, which performs the final prediction of rela-
tive intensity. The Regression Head consists of three fully connected
layers with 1024, 512, and 64 neurons, respectively, each followed by
ReLU activations and dropout. A final linear layer produces a single
scalar value corresponding to the predicted %1-RM for the analyzed
squat attempt.
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Figure 3. Architecture of the model for predicting relative load intensity.
The system consists of three main modules: the Squat Encoder, the Context
Encoder, and the Regression Head, which fuses both representations to
generate the final prediction.

6.2 Loss Function and Training Algorithm

The model was trained in a supervised regression setting. To guide
the learning process, we employed the Root Mean Square Error
(RMSE) as the loss function, due to its sensitivity to larger errors
and its alignment with the objective of minimizing prediction devia-
tion. In addition to the training loss, two evaluation metrics—Mean
Absolute Error (MAE) and R-squared (R?) were tracked to provide
a more comprehensive assessment of model performance across ex-
periments.

During the initial phase of model development, three optimiza-
tion algorithms were evaluated: Stochastic Gradient Descent (SGD),
Adam, and AdamW [18]. Preliminary experiments indicated that
AdamW consistently achieved superior performance in terms of
both convergence rate and validation error. This outcome is con-
sistent with recent empirical studies demonstrating the advantages



of AdamW over other optimizers, particularly due to its decoupled
weight decay regularization and improved generalization capabilities
in deep neural networks. In light of these findings and the observed
empirical performance, AdamW was selected as the optimization al-
gorithm for all experiments reported in this study.

6.3 Data Splitting and Cross-Validation Strategy

To reliably assess the quality of the trained models, we adopted the
assumption that any split of a given dataset must take repetition struc-
ture into account. This means that samples originating from the same
repetition, recorded by different cameras, must be assigned to the
same subset. This ensures that no data leakage occurs between any
two subsets. However, due to the limited number of participants, it
was not feasible to perform a split into train and test sets based on
individual subjects.

Due to the relatively small size of the dataset for training deep
neural networks, we had to limit the test set to a sufficient mini-
mum. Therefore, we adopted a 9:1 split ratio between the training
and test sets. This corresponded to 1129 samples in the training set
and 126 samples in the test set. During model training, we applied
4-fold cross-validation. The training set was divided into four sub-
sets, three of which served as a temporary training set, while the
fourth was used as a temporary validation set for model evaluation
during training. The test set, which contained samples unseen by the
model during training, was used exclusively for evaluation with the
final epoch weights as well as with the weights that yielded the best
model performance.

6.4 Optimization of ST-GCN Hyperparameters

To optimize the predictive accuracy of relative load intensity estima-
tion, we conducted a series of experiments focused on selecting the
most effective structural parameters for the ST-GCN model. Given
the inherent architectural complexity of Spatio-Temporal Graph
Convolutional Networks and the multitude of possible configura-
tions, we focused on two principal design variables: the temporal
kernel size and the maximum hop distance. Both hyperparameters
were evaluated in conjunction with various partition strategies, which
govern how neighborhood information is propagated between graph
nodes. Each value of the temporal kernel size and max hop distance
was assessed in combination with four distinct partition strategies:
uniform, distance-based, spatial with the skeleton center located at
the thorax, and spatial with the skeleton center located at the pelvis.

The first stage of the experiments investigated the influence of the
temporal kernel size, which defines the size of the time window used
in temporal convolutions. This hyperparameter controls the model’s
ability to capture long-range temporal dependencies within the input
pose sequences. Assuming a video frame rate of 30 FPS, we tested
kernel sizes of 15, 31, 61, and 75, corresponding to approximately
0.5, 1, 2, and 2.5 seconds of motion, respectively. Each kernel size
was evaluated in conjunction with the four aforementioned partition
strategies. For the sake of comparability, the maximum hop distance
was fixed at 1 across all strategies in this stage, as the uniform strat-
egy is only defined for a hop distance of 1. Table 3 presents the re-
sults of these experiments. The lowest RMSE overall (5.8157, SD
= 0.3972) was achieved using the uniform partition strategy with a
temporal kernel size of 75. However, larger temporal kernels sig-
nificantly increase inference time, which may hinder real-time or
resource-constrained deployment. Among the non-uniform strate-
gies, the most consistent and favorable performance was observed

with a kernel size of 31. The best configuration in this group (RMSE
=5.8596, SD = 0.2808) was obtained using the spatial strategy cen-
tered at the pelvis. Considering the trade-off between accuracy and
computational efficiency, a kernel size of 31 was selected for subse-
quent experiments.

Table 3. Mean and standard deviation of RMSE scores for different
temporal kernel sizes. Each result reflects the average performance over four
cross-validation folds.

Partition Strategy

Spatial

Kernel Size  Metric ~ Uniform  Distance Thorax Pelvis
15 Mean 8.8572 6.7342 6.5563 6.9773

Std 0.4292 1.2971 1.472 2.2341

31 Mean 8.5068 6.0649 5.8784 5.8596

Std 1.4484 0.7138 0.4917 0.2808

61 Mean 6.6167 7.2605 5.8847 5.9760

Std 0.5405 0.2656 0.3993 0.9257

75 Mean 5.8157 6.0758 6.31533  8.8578

Std 0.3972 0.4181 0.8334 0.5278

In the next phase of our study, we investigated the impact of the
max hop distance hyperparameter, which defines the maximum num-
ber of graph edges over which information can propagate during spa-
tial graph convolution. In practice, this hyperparameter controls how
far each node can influence others during message passing within
the ST-GCN layers. Each partition strategy was evaluated with max
hop distances ranging from 1 to 4. Higher values were excluded from
analysis, as the underlying skeleton graph used in this work contains
only 19 nodes. Beyond a certain threshold, increasing the hop dis-
tance leads to a rapid saturation of graph connectivity—diminishing
the benefits of localized spatial structure and increasing computa-
tional cost without meaningful performance gain. Table 4 summa-
rizes the results. The lowest overall RMSE (4.8342, SD = 0.5930)
was achieved using the distance-based partition strategy with a max
hop distance of 2. This configuration outperformed all other combi-
nations across the evaluated strategies. For the spatial partition strat-
egy (both thorax- and pelvis-centered), the best performance was ob-
served at a hop distance of 1, although the corresponding RMSE
values (5.3674 and 5.6552, respectively) remained higher than the
optimal distance-based configuration.

Table 4. Mean and standard deviation of RMSE scores for different
maximum hop distances. Each result reflects the average performance over
four cross-validation folds.

Partition Strategy

Spatial

Max Hop  Metric  Uniform  Distance  Thorax  Pelvis
1 Mean 8.5068 5.8348 53674  5.6552

Std 1.4484 0.4785 0.5932  1.1292

2 Mean - 4.8342 6.7283  6.0282
Std - 0.5930 0.3897  0.1561

3 Mean - 5.3242 7.7605  5.9648

Std - 0.3812 0.4970  0.2814

4 Mean - 6.1665 6.9031  8.4139
Std - 0.5363 0.6973  0.3572

Based on the results of the architectural experiments, the optimal
ST-GCN configuration was determined to include a temporal ker-
nel size of 31, the distance-based partition strategy, and a maximum
hop distance of 2. This setup provided the most favorable balance be-
tween prediction accuracy and computational efficiency across tested
variants. Accordingly, this configuration was adopted as the default
in all subsequent experiments. Furthermore, the model achieving the



best performance (RMSE = 4.8342, SD = 0.5930) with these opti-
mal settings was designated as the baseline for the remainder of the
experimental study.

All architecture-related experiments were conducted under fixed
training conditions. To ensure a fair comparison between configura-
tions, all models were trained using identical hyperparameters, which
remained unchanged throughout this phase of the study. The only
variables modified were the structural parameters under investiga-
tion—namely, the temporal kernel size, the partition strategy, and
the maximum hop distance. Each model was trained for exactly 100
epochs, providing consistent training duration across all configura-
tions. This setup allowed us to isolate the effect of architectural de-
sign choices on prediction performance, without introducing con-
founding factors from optimization dynamics.

6.5 Model Training

The proposed was trained for a maximum of 200 epochs. Given
the relatively small dataset, batch sizes ranging from 16 to 64 were
explored. A conventional early stopping strategy was employed to
ensure training stability and prevent overfitting by halting training
when validation performance ceased to improve over a specified win-
dow. Model checkpoints were monitored throughout training and
saved whenever the validation loss improved. However, only the
best-performing checkpoint i.e., the one achieving the lowest RMSE
on the validation set—was retained for final evaluation. Learning rate
scheduling was applied using strategies such as the StepLR scheduler
to promote convergence. Throughout training, model performance
was continuously evaluated on the validation set using the RMSE
metric. After training completion, both the final epoch weights and
the best checkpoint were evaluated on the test set using RMSE,
MAE, and R®.

Table 5. Performance comparison of the Mayhew model (the strongest
traditional baseline on this dataset), the baseline model, and the proposed
model in predicting 1-RM.

Model Metric  RMSE  MAE R?
Mayhew et al. [21] Mean  7.0359 6.4364 0.9718
Std - - -
Baseline Model Mean  4.8342  3.7759  0.9361
Std 0.5930 0.5616 0.0163
Proposed Model Mean  4.5412 3.3338  0.9522
Std 0.2965 0.1892  0.0063

Data augmentation was applied exclusively to the training set and
limited to the input of the Squat Encoder, which processes pose data
derived from BlazePose. Specifically, Gaussian noise was added to
the 3D keypoint coordinates. The noise was drawn from a normal
distribution with a defined mean and standard deviation. To introduce
variability while preserving data diversity, this transformation was
applied probabilistically, ensuring that only a portion of the samples
was augmented within each training epoch.

The final model was trained using a batch size of 64, with a learn-
ing rate of 0.0001 and a weight decay of 1e-6. Dropout regularization
was set to 0.1 across fully connected layers, and training was con-
ducted for 150 epochs. A StepLR learning rate scheduler with a step
size of 50 and decay factor of 0.5 was used to refine convergence.
Noise-based data augmentation was applied to the pose input with a
probability of 0.9, using zero-mean Gaussian noise with a standard
deviation of 0.01. The ST-GCN configuration included a distance-
based partition strategy, a maximum hop distance of 2, and a dilation
factor of 1.

Loss Curves for Training and Validation Data
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Figure 4. Training and validation loss curves over 150 epochs, measured
in RMSE. The plot illustrates effective convergence of the model.

The proposed model achieved the highest predictive accuracy
across all evaluated metrics, as illustrated in Table 5, outperform-
ing both the baseline and the classical Mayhew model. It obtained
the lowest RMSE (4.5412) and MAE (3.3338), with notably low
variance, indicating stable performance. While the Mayhew model
showed a slightly higher R?, this can be attributed to the limitations
of R? in nonlinear settings—it favors models that explain overall
variance, whereas our model captures fine-grained, nonlinear pat-
terns that yield more precise predictions, better reflected by RMSE
and MAE.

The training curves, shown in Figure 4, confirm the model’s ef-
fective convergence and generalization. Overall, the proposed model
demonstrates superior performance and stability, offering a more ac-
curate and nuanced alternative to traditional linear methods in esti-
mating 1-RM.

6.6 Hardware and Software Configuration

The experiments were carried out on a system running Windows
11, equipped with an NVIDIA RTX 6000 Ada Generation (48 GB
VRAM), an AMD Ryzen 9 7950X 16-Core Processor, and 64 GB
of RAM, providing a robust environment for deep learning tasks.
Python 3.11 was used as the primary programming language, with
PyTorch 2.6.0+cul18 serving as the core deep learning framework.

7 Conclusion

This study presented a novel, vision-based approach for predicting
One-Repetition Maximum in strength sports, specifically targeting
the estimation of relative load intensity in the back squat using spatio-
temporal pose data. By combining BlazePose-based pose estimation
with Spatial-Temporal Graph Convolutional Networks, the method
successfully inferred %1-RM from full-body movement patterns, of-
fering a more accurate, non-invasive alternative to traditional sensor-
based or formulaic methods.

The findings highlight the potential of data-driven, movement-
based performance modeling, particularly in settings where safety
and scalability are essential. Future research will aim to improve
model generalizability through expanded datasets and enable real-
time deployment in training environments using lightweight archi-
tectures. These advancements could pave the way for intelligent
coaching systems that provide immediate, personalized feedback to
athletes and coaches.
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