Counterfactual Explanation for Anomaly Detection using
Graph Neural Network

Xiangyu Shi *°, Abhishek Srinivasan *°* and Sepideh Pashami® ¢

aScania CV AB, Vagnmakarvigen 1, Sodertilje, Sweden
"Department of Computer Science, KTH University, Stockholm, Sweden.
“Halmstad University, Halmstad, Sweden
dRISE AB, Isafjordsgatan 28 A, Kista, Sweden
ORCID (Xiangyu Shi): https://orcid.org/0000-0002-0356-1941, ORCID (Abhishek Srinivasan):
https://orcid.org/0000-0003-4178-5257, ORCID (Sepideh Pashami): https://orcid.org/0000-0003-3272-4145

Abstract.

In industrial settings, anomalies often indicate critical events such
as equipment failures or system faults. These events are rare but
highly impactful and require urgent attention and often have fi-
nancial or safety consequences. Deep learning models, especially
Graph Neural Networks (GNN5s) have gained prominence due to their
ability to capture intricate dependencies between sensor signals as
graphs. Understanding the reasons behind the predicted anomalies
is essential for effective response, however, the black-box nature of
GNNss poses a significant challenge.

To address this limitation, we propose a counterfactual explanation
framework that offers human-understandable insights by identifying
minimal input changes capable of altering the model’s decision. Our
method employs a two-stage process: (i) selecting the most relevant
nodes contributing to the anomaly using graphs, and (ii) generating
counterfactual instances by perturbing only these selected nodes. We
evaluate our approach on two real-world CPS datasets: SWaT and
WADI. Experimental results show that our method produces signif-
icantly sparser explanations compared to existing techniques. Addi-
tionally, our ablation study shows using graph information for node
selection helps in generating sparse explanations. These counterfac-
tual insights enhance model transparency, support better operational
decision-making, and ultimately foster greater trust in anomaly de-
tection systems.

1 Introduction

In the age of cyber-physical systems (CPS), where physical processes
are tightly integrated with computation and communication infras-
tructure, ensuring reliable and safe operation of these systems is of
paramount importance. As these systems become increasingly com-
plex, continuous monitoring of their health has emerged as a vital
component of operational safety and performance optimization. One
of the key techniques employed in this context is anomaly detection
(AD), which involves identifying patterns in system behavior that
deviate from expected norms. Accurate anomaly detection enables
early fault diagnosis, minimizes downtime, and helps prevent catas-
trophic failures.

* Corresponding Author. Email: srini @kth.se .

Traditional anomaly detection methods encompass a wide range
of statistical and machine learning techniques. These include clus-
tering approaches such as k-means, and density estimation methods
like One-Class SVM and Isolation Forests [4]. More recently, deep
learning-based methods such as autoencoders, recurrent neural net-
works (RNNSs), and variational autoencoders (VAEs) have been em-
ployed to model the normal behavior of time-series data and iden-
tify deviations [17]. While effective in many cases, these approaches
generally operate under the assumption that sensor observations are
independent or sequentially dependent, and they often fail to account
for the structural inter-dependencies among sensors in a system.

Traditional anomaly detection methods often treat sensor observa-
tions independently or assume simplistic temporal dependencies, ig-
noring the inherent structural relationships between different sensing
components. In many CPS applications—such as industrial automa-
tion, energy distribution networks, and autonomous vehicles—the
behavior of a sensor is often influenced by the states of its neighbor-
ing sensors due to underlying physical or logical connections. Cap-
turing these interactions is essential for robust modeling of system
behavior. Graph-based representations provide a natural and expres-
sive framework to encode these inter-sensor relationships. Recent ad-
vances in Graph Neural Networks (GNNs) have made it possible to
effectively leverage graph-structured data for tasks like classification,
prediction, and anomaly detection in multivariate time series data [8].

Several studies have demonstrated that modeling sensor depen-
dencies through graph structures can significantly enhance the per-
formance of anomaly detection systems in CPS settings [6, 16, 8].
Despite these promising results, a major limitation persists: the lack
of explainability. GNN-based anomaly detection models are often
treated as black boxes, offering little insight into why a particu-
lar anomaly was detected. This is particularly a problem in safety-
critical domains, where human operators must understand and trust
the decisions made by automated systems.

To bridge this gap, the machine learning community has increas-
ingly focused on explainability, with methods generally categorized
into local explanations—targeting individual predictions and global
explanations—describing overall model behavior [13]. While several
explanation techniques have been proposed for standard deep learn-
ing models, the explainability of GNNs, especially in time-series
contexts, remains an underexplored area. Moreover, existing expla-

nation methods often rely on feature attribution or saliency maps,
which may lack causal grounding and are limited in the types of
counterfactual insights they can provide. Our primary focus is to ex-
plore whether graph structure in GNNs be harnessed for better ex-
plaining the model’s decisions.

In this work, we propose a novel framework for counterfactual
explanation tailored to GNN-based anomaly detection models oper-
ating on time-series sensor data. Counterfactual explanations aim to
answer the question: “What minimal change to the input would al-
ter the model’s prediction?”—thus providing actionable and intuitive
insights into model decisions. Counterfactual explanations can give
a clue as to the root cause of the anomalies.

Our approach comprises a two-stage process. In the first stage, we
identify the most influential sensors that contribute to an anomaly,
along with their local graph neighborhoods. This localization step
leverages node-level deviations and GNN attention mechanisms to
pinpoint regions of the graph that are most responsible for the pre-
diction. In the second stage, we generate counterfactual instances by
perturbing sensor readings in a minimal and plausible manner, aim-
ing to flip the model’s prediction from anomalous to normal (or vice
versa). These counterfactuals serve as transparent, case-specific ex-
planations that can assist operators in understanding failure modes
and potential corrective actions. By integrating such support-systems
reduces cognitive load on the human decision-makers, while allow-
ing them to effectively validate model outputs.

By combining the structural strengths of GNNs with the intuitive
clarity of counterfactual reasoning, our method advances the state of
the art in explainable anomaly detection for cyber-physical systems.
On the SWaT and WADI benchmarks, our two-stage approach alters
fewer than 6% of sensors, yet still delivers an outstanding sparsity-
versus-proximity balance that makes the counterfactuals concise and
actionable. This not only enhances trust and accountability but also
opens new avenues for troubleshooting and diagnostics.

2 Related Work

2.1 Counterfactual Explanation for Time Series

Several recent studies have explored counterfactual explanation tech-
niques for time series data, with the aim of explaining model deci-
sions by identifying minimal changes in input features that would
alter the model output.

For instance, Karlsson et al. 2020, propose a technique for gener-
ating counterfactuals using models like k-nearest neighbors and ran-
dom shapelet forests. In another approach, Wang et al. 2021, focus
on univariate time series by mapping data to a latent space, identify-
ing counterfactuals there, and decoding them back to the input space.
Native-Guide [5] identifies the nearest contrasting instance, extracts
its most influential subsequence, and substitutes it into the original
time series. COMTE [2] selects alternative series from the training
set to replace parts of the input in order to induce prediction changes.
More recently, CFWoT [14] introduces a model-agnostic framework
for both static and multivariate time series, capable of handling con-
tinuous and categorical features without needing access to training
data or similar samples.

These approaches often do not focus on relational structures
present in multivariate time series data, which is the focus of this
work.

2.2 Counterfactual Explanation of Graph Neural
Networks

Counterfactual explanation methods of graph neural networks aim to
identify the smallest possible modifications to the input that would
lead to a different model output. By pinpointing which features must
be altered to change a prediction, these methods offer valuable in-
sights into the model’s decision boundaries and causal reasoning.

A representative method in this category is CF-
GNNExplainer [10], which introduces a learnable binary mask
over the model’s computational graph to indicate edge presence or
removal. The mask is optimized to (1) alter predictions (prediction
loss) and (2) minimize structural changes (distance loss). The final
explanation highlights edges with the highest importance scores
from the learned mask.

Another thread of counterfactual explanation methods is to gen-
erate counterfactual instances that are close to the original instance
but lead to a different prediction. CLEAR [11] employs a graph vari-
ational autoencoder (GVAE) to learn a latent representation of the
input graph and generate counterfactual graphs by making minimal
changes to the original structure or features. The GVAE is trained
to reconstruct the original graph while ensuring that the generated
counterfactual samples result in a different model prediction, main-
taining both proximity (closeness to the original instance) and valid-
ity (changing the prediction). RCExplainer [3] uses a neural network
that predicts the existence of an edge between two nodes based on
their embeddings. To generate counterfactual explanations, RCEx-
plainer modifies these pairwise node embeddings, effectively simu-
lating the addition or removal of edges that lead to a change in the
model’s prediction. This approach allows for a structured and inter-
pretable way of understanding which edges influence the decision of
the GNN model.

However, these methods primarily focus on structural changes to
the graph, such as edge addition or removal, rather than utilizing
graph structures for time series data, which is the focus of our work.
Our approach leverages the inherent relationships between sensors in
a time series context, enabling us to generate counterfactual explana-
tions that are both interpretable and relevant to the specific anomalies
detected by GNN-based models.

3 Method
3.1 Problem Statement

This paper addresses the task of explaining anomalies in multivariate
time series data through counterfactual explanation generation. To
support this, we incorporate an initial anomaly detection component
as a foundation.

We begin by employing an unsupervised time series anomaly de-
tection model that learns the normal behavior of a system from his-
torical data and detects deviations in unseen data. The input con-
sists of multivariate sensor data V, where |V| = N and N is
the number of sensors. The training data is denoted as strain =
[sM,s@ . TN where each s € RY represents sensor
readings at time t. The model assumes training data to be free of
anomalies and captures normal system patterns to flag abnormal
points in the test data.

The core focus of this work lies in generating counterfactual ex-
planations for the data points identified as anomalous. The coun-
terfactual explanation provides human-interpretable insights into
the model’s decision-making process by answering the question:

What minimal change would make an anomalous instance be con-
sidered normal? Formally, given a test data sequence Sws =
[s(l), s@ . ,S(T‘e“‘)] and a set of anomaly predictions, the goal is
to generate, for each detected anomaly st(;{ a modified version sf;)[/
such that the model classifies st(éfs)t/ as normal, and stest®’ remains
as close as possible to s[(;)t under a suitable distance metric.

3.2 Overview

~

1 Two-stage approach \

Graph |
1) GNN-based Anomaly| _'nformation >))
- | .a) Node Extraction
Detection Anomaly Y
Sample ig
Informative

2.b) Counterfactual

Explanation Generation

|
|
|
|
|
|
Subgraph |
|
|
|
|
|

Figure 1. The overall framework of our approach. The framework consists
of two primary modules: (1) a GNN-based model for time series anomaly
detection, and (2) a two-stage approach for generating counterfactual
explanations: (a) the node selector and (b) the counterfactual generator.

Figure 1 illustrates the overall framework of our proposed method-
ology. Our framework consists of two primary modules: (1) a graph
neural network (GNN) architecture designed for time-series anomaly
detection, and (2) a two-stage mechanism for producing counter-
factual explanations. The GNN component processes the input time
series sequences and produces binary classifications (normal versus
anomalous) for individual temporal observations. Subsequently, the
two-stage explanation module utilizes both the original time series
input and the GNN’s classification outcomes to construct counterfac-
tual explanations specifically for data points identified as anomalous.

3.3 GNN-based Model for Time-Series Anomaly
Detection

This section presents GNN-based model for time-series anomaly de-
tection, which utilizes the methodology proposed by Deng and Hooi
2021. The model produces an anomaly score for time series data,
labeling it as anomalous if its score exceed a specified threshold.
Following the GDN architecture [6], the implementation integrates
structural learning techniques with graph neural networks, compris-
ing four interconnected modules: sensor embedding, graph struc-
ture learning, graph attention-based forecasting, and graph deviation
scoring.

For each sensor ¢ is represented by a trainable embedding vec-
tor e; € R?, learned jointly with the forecasting objective. These
embeddings capture the behavior patterns of the sensors and can be
used to identify which sensors are similar to each other. Sensors that
are highly correlated will have similar embedding vectors.

To explicitly represent inter-sensor relationships, we build a data-
driven directed graph. For every pair of sensors embeddings e; and

e;, we compute cosine similarity as:

T
’ €; €
ij

6]

~ leslllles NI

and retain the top-k neighbors of each node to obtain the adjacency
matrix A. This resulting directed graph explicitly encodes domi-
nant inter-sensor relationships, informing subsequent forecasting and
anomaly scoring steps.

With the learned adjacency matrix A, graph-attention layers pro-
cess each time window x*) € R™*™_ For node i at time ¢, the
hidden state is

hgt) = ReLU Oti,l'WX,Et) + Z Oéi,ijgt) s)
JEN(3)

where attention weights o;; are softmax-normalized cosine similari-
ties of concatenated node features.

A fully connected layer then maps sensor representations into pre-
dicted sensor values:

= fo([er-hl e2 nlen ml]),)

where f is a fully connected layer. The output §*) is the predicted
values of the sensors at time ¢. The model is trained using a mean
squared error (MSE) loss function:

Tirain

1
> ls =3, @)

Tieain — W
train t=w+1

ﬁMSE =

where Tirain is the total number of training samples.
Deviations between predicted and actual values are calculated as

the deviation score for each sensor Err; (t) = |§Z(»t> — sgt) |, where égt)

is the predicted value and sgt) is the actual value of sensor % at time
t.
To ensure that all deviation scores are on the same scale, we nor-

malize the deviation score as follows:

_ Bmi(t) — fu
= =

AS,(t) , (%)
where [i; and &; are the median and inter-quartile range (IQR) of the
deviation scores of sensor ¢ over the training set, as followed by [6].

The final anomaly score at time ¢ is given by taking the maximum
across all sensors:

AS(t) = mfalx ASi(t), (6)
where NNV is the number of sensors. The system is flagged as anoma-
lous if the score exceeds a predefined threshold.

3.4 Two-stage Approach

Anomaly samples detected by the GNN-based anomaly detection
model are fed into the two-stage approach for generating an ex-
planation. The first stage involves node extraction, which identifies
the most relevant sensors to guide the counterfactual explanation
method. The second stage uses a counterfactual explanation method
that generates counterfactual instances by altering only the sensors
identified in the extracted node set from the first stage.

Figure 2. Node extraction module. This figure illustrates the process of
selecting the most important sensors based on their anomaly scores. Sensors
with darker red coloring indicate higher anomaly scores. With parameters
k1 = 1 and k2 = 1, the 4th sensor is first selected (subfigure b), and then
the 5th sensor is selected as it is connected to the 4th sensor (subfigure c).
The final selected node set contains the 4th and 5th sensors.

3.4.1 Node Extraction

To generate counterfactual explanations focused on the most relevant
sensors, we need to extract a node set containing only the most im-
portant sensors from the original graph. The node extraction module
uses the anomaly score for each sensor to identify the most important
sensors in the graph. The extraction process consists of three steps:

1. Select the top k1 sensors with the highest anomaly scores, where
k1 is a hyperparameter that controls the size of the initial node set.

2. Select k2 additional sensors that are connected to the selected k1
sensors in the graph, where k2 is a hyperparameter that controls
the size of the extended node set.

3. Combi(ns both sets of sensors to form the final set of selected sen-
sors S,

Figure 2 illustrates this node extraction process. For a given time
step t, we extract a node set based on anomaly scores. In the first
step, we select the top ki sensors Sit) according to their anomaly
scores AS;(t) from the sensor set V:

S = {i € V | rank(AS;(t)) < k1}, @)

where rank(-) ranks sensors by anomaly scores in descending order.
This step selects sensors with the highest anomaly scores, as they are
most likely to contribute to the detected anomaly and are therefore
most relevant for generating counterfactual explanations.

In the second step, we select k2 sensors Sét) that are connected to
the selected k1 sensors:

NS ={ev\s® |3ies?: a,; =1},

®)
85 CN(S), 18Y] = ke,

where N (Sft)) represents the neighboring sensors of the selected
k1 sensors. Several strategies exist for selecting Sé” from A/ (SY)),
including choosing sensors with the highest anomaly scores, those
most connected to SY) , or random selection. We choose the top k2
sensors with the highest anomaly scores as this provides a simple and
effective way to select the most relevant sensors.

Finally, we combine both sets to form the final selected sensor set:

S =5 usi. ©)

The selected node set S is then used as input to the counterfac-
tual explanation method, which generates counterfactual instances
by altering only the sensors in the extracted set.

3.4.2 Counterfactual Explanation Generation

The counterfactual explanation generation module creates counter-
factual instances by altering the signals of the sensors in the extracted

node set. We use a perturbation-based approach that generates coun-
terfactual instances by adding small changes to the original signal.

We employ gradient optimization, a technique commonly used in
adversarial attacks, to compute these perturbations effectively. The
perturbation is found by minimizing the objective function £(x, x +
§), where x is the original signal, and § is the perturbation. The
objective function is defined as:

L(x,x+6) = Lee(f(x+8), Yuger) + A [|6]], (10)

where A controls the trade-off between the two terms, f(-) is the

model, Yurget is the target class, and Lcg is the cross-entropy loss.

The first term pushes the model to produce a specific output (the

target class), while the second term keeps the perturbation small.
The perturbation is computed using gradient descent:

8D = §' — pVsL(x,x + 6), (11)

where 7 is the learning rate, and ¢ is the iteration number. We initial-
ize the perturbation to zero: 6° = 0.

To focus only on the extracted sensors, we apply a mask to the
gradient. The mask m is defined as:

1, ifies®
m; — , e ') (12)
0, otherwise.

This mask zeros out the gradients for sensors not in the extracted
node set. The masked gradient is computed as:

V5L(x,x +06) = VsL(x,x + §) O m, (13)

where ® denotes element-wise multiplication. The perturbation is
then updated using the masked gradient:

D = §t — pVsL(x,x + 6). (14)

This process continues until we reach the maximum number of it-
erations or obtain a valid counterfactual instance. The final step adds
the perturbation to the original signal:

X=X+ 0. (15)

The generated counterfactual instance X is a modified version of
the original signal that produces a different model output. This coun-
terfactual instance explains the model’s decision by showing how
the prediction changes when influential sensors are altered. By only
perturbing sensors in the extracted node set, we focus on the most
relevant sensors, which helps minimize the perturbation size and im-
prove the quality of explanations.

4 Experiments
4.1 Experiment Setup
4.1.1 Datasets

We evaluate our approach on two multivariate time series datasets
from industrial control systems, comprising both public benchmarks.
Dataset statistics are summarized in Table 1.

Table 1. Dataset statistics and characteristics.

Dataset #Feature #Train #Test ~ Anomaly Ratio
SWaT [12] 51 47,520 44,991 12.20%
WADI [1] 128 118,800 17,280 5.77%

We use two widely-adopted water treatment testbed datasets:
SWaT [12] and WADI [1]. The Secure Water Treatment (SWaT)
dataset contains data from a scaled water treatment plant with 51
sensors monitoring various physical processes. The Water Distribu-
tion (WADI) dataset extends SWaT with a more comprehensive 128-
sensor water distribution system. Both datasets include two weeks of
normal operations followed by controlled attack scenarios that simu-
late real-world anomalies through physical system manipulations.

We apply consistent preprocessing across all datasets following
[6]: (1) median downsampling to 0.1 Hz (one sample per 10 sec-
onds) to reduce noise and computational overhead, (2) sensor-wise
min-max normalization to [0,1] range, and (3) sliding window seg-
mentation into 50-second chunks (5 downsampled measurements)
for model input, following the previous works [6].

4.1.2 Baseline Methods

We compare the GNN anomaly detection approach against several
baseline models, including six traditional machine learning models,
and one GNN-based model. The compared models are listed as fol-
lows:

e KNN: K Nearest Neighbors utilizes the distance of each point to
its k nearest neighbors as the anomaly score and classifies the
point as anomalous if the score is greater than a specified thresh-
old.

e [Forest: Isolation Forest is an ensemble-based anomaly detection
model that isolates anomalies by randomly partitioning the data
into smaller subsets. It builds an ensemble of isolation trees and
uses the average path length of the trees to compute the anomaly
score.

e OCSVM: One-Class SVM is a support vector machine-based
anomaly detection model that learns a decision boundary around
the normal data points and classifies points outside the boundary
as anomalous.

e AutoEncoder: AutoEncoder consists of an encoder and a decoder
which reconstruct data samples from the input data. The recon-
struction error is used as the anomaly score.

e VAE: Variational AutoEncoder is a improved version of AutoEn-
coder, which learns a probabilistic model of the data.

e PCA: Principal Component Analysis looks for a low-dimensional
projection of the data that captures most of the variance of the
data. The reconstruction error is used as the anomaly score.

e FuSAGNet [7]: FuSAGNet introduces Fused Sparse Autoencoder
and Graph Net, which jointly optimizes reconstruction and fore-
casting while explicitly modeling the relationships within multi-
variate time series.

For counterfactual explanation generation, we compare against
two additional baselines: (1) Reconstruction, which directly uses au-
toencoder reconstructions as counterfactual explanations under the
assumption that reconstructions project onto the normal space, and
(2) Without Node Extraction, which represents our method without
the node extraction component.

4.1.3 Evaluation Metrics

We evaluate our approach using two sets of metrics: anomaly detec-
tion performance and counterfactual explanation quality.

Anomaly Detection Performance. We assess the anomaly detec-
tion model using standard classification metrics: precision, recall,
Fl-score, AUC-ROC, and PRC-AUC. AUC-ROC and PRC-AUC
provide a comprehensive assessment of the model’s performance
across different threshold values and are widely used metrics for
evaluating classification models.

Counterfactual Explanation Quality. We evaluate generated
counterfactuals using three quantitative metrics alongside qualitative
visual inspection. Validity measures the fraction of counterfactuals
that successfully flip the model’s prediction:

Neg

D O I(f(xi) <6) (16)

i=1

Validity =]é
cf

where N is the number of counterfactuals, f(-) is the model, € is
the classification threshold, and I(-) is the indicator function.

Sparsity quantifies the average fraction of sensors modified per
counterfactual:

N N
1 1 ;
ity = — — 1(|5% 17
Sparsity = 5~ Z;N; (163 > ©) (17

where IV is the number of sensors, 6} is the perturbation for sensor j
in counterfactual ¢, and ¢ is a minimal change threshold.
Proximity measures the average magnitude of perturbations:

Neg
1 .
Proximity = N E 16" (18)
=1

where 8° represents the perturbation vector for counterfactual 4.

Higher validity indicates more effective counterfactuals, while
lower sparsity and proximity reflect better explainability through
minimal, localized changes.

4.1.4 Implementation Details

We implement the proposed approach using PyTorch and PyTorch
Geometric. The model is trained with Adam optimizer with learn-
ing rate 1 x 1073 and (B1,82) = (0.9,0.99) for 50 epochs. We
include early stopping with a patience of 10 epochs. The embedding
dimension for the sensors is 128 for WADI dataset, and 64 for SWaT
dataset. Training is performed on a single Tesla T4 GPU with 16
GB memory. For the node extraction module, we set k1 = 2 and
k2 = 1. The perturbation is computed using gradient descent with a
learning rate of 0.001 and a maximum of 100 iterations, with Adam
optimizer. A for the objective function is 0.1 for SWaT dataset and
0.001 for WADI dataset.

4.2 Benchmark Comparison

In this section, we conduct two benchmark comparisons. The first
benchmark is to compare the anomaly detection performance of the
proposed GNN-based model with the other baseline models. This
benchmarking acts a sanity check for anomaly detection. The second
benchmark is to compare the generated counterfactual explanations
with the baseline models.

Table 2. Anomaly detection performance of different models on the WADI
and SWaT datasets. The best results are highlighted in bold. Higher values

are better.
Dataset Model Fl1 Precision Recall ROC-AUC PRC-AUC
KNN 0.5295 0.7824 0.4002 0.7685 0.4829
IForest 0.2984 0.3010 0.2959 0.7375 0.2104
OCSVM 0.5109 0.6772 0.4102 0.7872 0.4897
WADI AutoEncoder 0.5434 0.8124 0.4082 0.7775 0.4928
PCA 0.5159 0.7036 0.4072 0.7449 0.4685
VAE 0.3652 0.2614 0.6058 0.7962 0.4753
FuSAGNet 0.4697 0.5195 0.4273 0.8109 0.4884
GDN 0.5646 0.8263 0.4293 0.8051 0.5089
KNN 0.7423 0.9826 0.5965 0.8058 0.7007
TForest 0.7075 0.9237 0.5733 0.8213 0.6155
OCSVM 0.7503 0.9922 0.6032 0.8178 0.7148
SWaT AutoEncoder 0.7411 0.9864 0.5936 0.8101 0.6959
PCA 0.7404 0.9939 0.5899 0.8151 0.7044
VAE 0.7378 0.9899 0.5881 0.8063 0.6960
FuSAGNet 0.7799 0.9847 0.6455 0.8676 0.7607
GDN 0.8152 0.9403 0.7209 0.8917 0.7988

Anomaly Detection Performance As a sanity check for GNN
model, we compare the performance of anomaly detection for the
proposed GNN-based model and the other baseline models on the
two datasets. The results are shown in Table 2.

On the WADI dataset, GDN achieves the highest F1, precision and
PRC-AUC, while FuSAGNet leads in ROC-AUC. VAE achieves the
best recall. These results suggest that GNN-based models offer more
balanced performance.

On the SWaT dataset, GDN consistently outperforms others across
nearly all metrics. PCA achieves the highest precision but with lower
recall, indicating a stricter anomaly boundary that may misclassify
normal instances.

Explanation Performance We compare the performance of coun-
terfactual explanations across different models. In addition to our
proposed method, we apply the two-stage approach using FuSAG-
Net. For baseline models without graph structures, we skip the node
extraction step and apply the counterfactual method directly. We
also evaluate a reconstruction-based counterfactual approach on both
GDN and FuSAGNet. Results are shown in Table 3. Note that KNN
and IForest are excluded, as their non-differentiable nature prevents
gradient-based counterfactual generation.

Table 3. Performance of counterfactual explanations for anomalous
instances on the WADI and SWaT datasets. W/o Node Extr. refers to methods
without the node extraction step, while W/ Node Extr. includes it.
Reconstruction indicates reconstruction-based counterfactual generation.
Metrics include validity, sparsity, and proximity, where higher validity and
lower sparsity/proximity indicate better performance. Best results in each
category are shown in bold.

Dataset ﬁr(l)(zlr;aly Detection ggz:;i'if;cltual Validity ~ Sparsity ~ Proximity
OCSVM w/o Node Extr. 0.4412 1.0000 0.2490
AutoEncoder w/o Node Extr. 0.4557 1.0000 0.1336
PCA w/o Node Extr. ~ 0.4581 1.0000 0.0561
VAE w/o Node Extr. ~ 0.6131 1.0000 0.0808
WADI w/o Node Extr. ~ 0.6714 0.0140 0.0075
FuSAGNet Reconstruction 0.0892 1.0000 0.5617
w/ Node Extr. 0.6714 0.0138 0.0075
w/o Node Extr. ~ 0.5148 0.1551 0.2837
GDN Reconstruction 0.0023 1.0000 0.4868
w/ Node Extr. 0.5718 0.0091 0.0124
OCSVM w/o Node Extr. 1.0000 1.0000 0.1132
AutoEncoder w/o Node Extr. 1.0000 1.0000 0.1002
PCA w/o Node Extr. 1.0000 1.0000 0.1680
VAE w/o Node Extr. ~ 0.9997 1.0000 0.2386
SWaT w/o Node E?(tn 0.9980 0.1517 0.0571
FuSAGNet Reconstruction 0.1330 1.0000 0.3188
w/ Node Extr. 0.1380 0.0552 0.0157
w/o Node Extr. ~ 0.9010 0.7714 0.0324
GDN Reconstruction 1.0000 1.0000 0.3218
w/ Node Extr. 0.9740 0.0547 0.0141

On the WADI dataset, the proposed approach achieves a validity
score of 0.5718, which is not significantly higher than other mod-
els, but still acceptable. Notably, it outperforms others in sparsity
and proximity, indicating that the generated counterfactuals are both
sparse and close to the original instances. In contrast, baseline mod-
els show poor performance, with a sparsity score of 1.0000 and
much higher proximity values. While FuSAGNet with node extrac-
tion achieves a higher validity score, its sparsity and proximity do
not improve significantly. These suggest that generating valid coun-
terfactuals is more easy, but needs more adjustment to the original
signal. We also find that the node extraction step is not effective for
FuSAGNet, as the validity score is the same as the model without the
node extraction step. Reconstruction-based methods perform poorly
on WADI, with low validity and sparsity fixed at 1.0000, indicating
difficulty in generating meaningful and interpretable counterfactuals.

On the SWaT dataset, a similar trend emerges. The proposed ap-
proach achieves a high validity score alongside low sparsity and
proximity, indicating effective and interpretable counterfactuals. Al-
though baseline models and reconstruction-based methods reach per-
fect validity, they suffer from high sparsity and proximity, reducing
explinability. When the node extraction step is removed from the pro-
posed approach, validity drops and sparsity increases significantly,
which highlights the step’s effectiveness. We attribute this to the
gradient-based method distributing perturbations across all sensors,
leading to less valid and less sparse counterfactuals. Interestingly,
FuSAGNet performs worse with node extraction on SWaT, dropping
to a validity score of 0.1380. This may stem from its architectural
constraints enforcing sparsity in the latent space [7], which limits its
adaptability in counterfactual generation.

4.3 Ablation Studies

Table 4. Performance of generated counterfactual explanations with
different hyperparameters for GDN on the SWaT and WADI datasets. k1 and
ko are the number of selected sensors and the number of neighbors for each
selected sensor, respectively. Higher validity and lower sparsity and
proximity scores are better.

Dataset k1 kg Validity Sparsity Proximity
T 0 04160 00200 0.0067
11 09640 00351 00113
2 0 09680 00361 00116

SWal 5 | 09740 00547 00141
30 09570 00548 00161
50 09430 00798 00206
T 0 04123 00064 00094
I 1 04123 00066 0.009%
2 0 05763 00089 00121

WADL 5 | 05718 00091 00124
30 0590 0009 00128
5 0 0590 00109 00139

Effect of Node Extraction Hyperparameters for Counterfactual
Explanations: We investigate the impact of hyperparameters k;
and k2, which control the number of selected sensors and their neigh-
bors, on the quality of counterfactual explanations using GDN on the
SWaT and WADI datasets. Results are shown in Table 4.

As k1 and ko increase, the validity score generally improves,
indicating that more valid counterfactuals can be generated, with
more features to perturb. However, this trend plateaus when the sum
k1 + ko exceeds 2, suggesting only a small number of informative
sensors and their immediate neighborhood are sufficient for effec-
tive explanation. Meanwhile, both sparsity and proximity scores in-

crease with k; and k2, reflecting reduced explainability due to more
widespread perturbations.

On the SWaT dataset, the best configuration is k1 = 2, k2 = 1,
achieving the highest validity of 0.9740 while maintaining relatively
low sparsity and proximity. Notably, this configuration outperforms
than the one with k; = 3 and k2 = 0, despite both involving three to-
tal nodes. This indicates that leveraging the graph structure to incor-
porate neighbors provides more targeted and efficient perturbations
than selecting more sensors independently, which highlights the ben-
efit of graph-based relational modeling in counterfactual generation.
In contrast, too few sensors (e.g., k1 = 1, k2 = 0) result in poor va-
lidity (0.4160), while too many (k1 = 5) can dilute the perturbation
effect, lowering validity to 0.9430. A similar pattern is observed on
WADI, where the best validity (0.5900) occurs at k1 = 3, k2 = 0,
though the overall scores are lower, which is likely due to WADI’s
higher dimensionality and complexity.

Overall, the number of selected sensors should be large enough
to ensure generation of valid counterfactuals, but small enough to
maintain explainability. Validity gains plateau after a certain point,
suggesting a trade-off between completeness and sparsity.

4.4 Visual Analysis Experiments

We show one illustrative example of the generated counterfactual ex-
planations for the detected anomalies. This example is selected from
the SWaT dataset, which contains a detected anomaly with a label
of 9. The original instance and the generated counterfactual instance
are shown in Figure 3.

Anomaly 9

1.50 —— FIT-401

—— P-501

125 . --- Altered FIT-401
- --- Altered P-501

Amplitude

Figure 3. An example of the detected anomaly and the generated
counterfactual instance on SWaT dataset. The original signals are shown in
solid lines, and the generated counterfactual signals are shown in dashed
lines. Only two altered sensors are shown in the figure.

This anomaly example is due to a attack on the sensor FIT-401,
which is a flow transmitter sensor. The attack manually set the sen-
sor value to 0, which makes actuator P-501 turns off (from 2 to 1 in
value). The original instance is shown in solid lines, and both sensors
are in the status of turning off. Our node extraction module selects
the most important sensors, i.e., FIT-401 and P-501. The generated
counterfactual instance is shown in dashed lines, where the sensor
FIT-401 is set to a higher value, and the actuator P-501 is set to a
higher value. We can see that there are correlations between the two
sensors, which indicates that they are related and can influence each
other’s behavior. This aligns with the physical setting of the system,
as FIT-401 is the upstream sensor of P-501, and the value of FIT-401
has direct influence on the value of P-501. The generated counterfac-
tual instance is valid, as it is close to the original instance and can be
interpreted as a valid counterfactual explanation.

5 Discussion

Our experimental results confirm that the proposed two-stage coun-
terfactual framework provides concise, actionable explanations that
improve trust and troubleshooting efficiency for system operators. In
this section we discuss two main insights.

Effectiveness of graph-aware counterfactuals: Across both
datasets, validity increases sharply once the explanation can perturb
at most three sensors, i.e. the k1+k2 = 3 setting, where k1 > 0, and
k2 > 0 and k2 > 0, denote that neighbors of the selected features
are utilised. This shows that usually only a few, closely linked vari-
ables drive each anomaly. When we choose some of those sensors
using the graph of how they connect (i.e. increasing k2), the result-
ing counterfactuals are more valid than if we just picked the sensors
with the highest anomaly scores. This backs up our idea that knowing
the system’s structure is crucial for clear counterfactual reasoning in
highly coupled systems.

Trade-off between validity, sparsity and proximity: Letting the
algorithm perturb more sensors (higher £, or k2) makes its explana-
tions more often valid, but it also means bigger changes to the data,
resulting in the results become harder to read and trust. Looking at
Table 4, the sweet spot seems to be k1 = 2 and k2 = 1: we still
get over 97% validity on the SWaT dataset while the typical change
stays under 0.015 (in normalized units). In practice, engineers can
pick these two knobs to suit their goals: smaller values if they want
to pinpoint the root cause with minimal edits, larger values if making
sure the validity is more important than keeping the edits tiny.

6 Conclusion

In this work, we introduced a novel framework to generate counter-
factual explanations tailored for graph neural network-based model.
Our approach leverages the representational power of GNNs to
model complex inter-sensor relationships in our two-stage explana-
tion mechanism which enables interpretable counterfactual reason-
ing. Extensive experiments on the SWaT and WADI benchmarks
show that our two-stage framework cuts the number of perturbed
sensors to less than 6% on average, while generating highly valid
counterfactual explanation. This superior sparsity—proximity trade-
off means the counterfactuals are both concise and easier for practi-
tioners to act upon.

Our framework contributes to more transparent and trustworthy
machine learning solutions for safety-critical domains by bridging
the gap between black-box anomaly detection using GNNs and ex-
plainable Al Future work may explore weighted similarity-based re-
lationships in graphs, the integration of domain constraints, real-time
explanation generation, and multi-criteria optimization.

Acknowledgements

The work was carried out with support from Vinnova (Sweden’s in-
novation agency) through the Advanced Digitalisation Program as
part of the future Al-based maintenance project (project number:
2023-01917).

References

[1] C.M. Ahmed, V. R. Palleti, and A. P. Mathur. Wadi: a water distribution
testbed for research in the design of secure cyber physical systems. In
Proceedings of the 3rd international workshop on cyber-physical sys-
tems for smart water networks, pages 25-28, 2017.

[2]

[3]

[4]
(5]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

E. Ates, B. Aksar, V. J. Leung, and A. K. Coskun. Counterfactual ex-
planations for multivariate time series. In 2021 international conference
on applied artificial intelligence (ICAPAI), pages 1-8. IEEE, 2021.

M. Bajaj, L. Chu, Z. Y. Xue, J. Pei, L. Wang, P. C.-H. Lam, and
Y. Zhang. Robust counterfactual explanations on graph neural networks.
Advances in Neural Information Processing Systems, 34:5644-5655,
2021.

V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM computing surveys (CSUR), 41(3):1-58, 2009.

E. Delaney, D. Greene, and M. T. Keane. Instance-based counterfactual
explanations for time series classification. In International conference
on case-based reasoning, pages 32—47. Springer, 2021.

A. Deng and B. Hooi. Graph neural network-based anomaly detection
in multivariate time series. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pages 4027-4035, 2021.

S. Han and S. S. Woo. Learning sparse latent graph representations
for anomaly detection in multivariate time series. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 2977-2986, 2022.

M. Jin, H. Y. Koh, Q. Wen, D. Zambon, C. Alippi, G. I. Webb, 1. King,
and S. Pan. A survey on graph neural networks for time series: Fore-
casting, classification, imputation, and anomaly detection. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2024.

I. Karlsson, J. Rebane, P. Papapetrou, and A. Gionis. Locally and glob-
ally explainable time series tweaking. Knowledge and Information Sys-
tems, 62(5):1671-1700, 2020.

A. Lucic, M. A. Ter Hoeve, G. Tolomei, M. De Rijke, and F. Sil-
vestri. Cf-gnnexplainer: Counterfactual explanations for graph neural
networks. In International Conference on Artificial Intelligence and
Statistics, pages 4499-4511. PMLR, 2022.

J. Ma, R. Guo, S. Mishra, A. Zhang, and J. Li. Clear: Generative coun-
terfactual explanations on graphs. Advances in neural information pro-
cessing systems, 35:25895-25907, 2022.

A. P. Mathur and N. O. Tippenhauer. Swat: A water treatment testbed
for research and training on ics security. In 2016 international workshop
on cyber-physical systems for smart water networks (CySWater), pages
31-36. IEEE, 2016.

C. Molnar. Interpretable Machine Learning. 3 edition,
2025. ISBN 978-3-911578-03-5. URL https://christophm.github.io/
interpretable-ml-book.

X. Sun, R. Aoki, and K. H. Wilson. Counterfactual explanations
for multivariate time-series without training datasets. arXiv preprint
arXiv:2405.18563, 2024.

Z. Wang, I. Samsten, R. Mochaourab, and P. Papapetrou. Learning time
series counterfactuals via latent space representations. In Discovery
Science: 24th International Conference, DS 2021, Halifax, NS, Canada,
October 11-13, 2021, Proceedings 24, pages 369-384. Springer, 2021.
Z. Wu, P. Jain, M. Wright, A. Mirhoseini, J. E. Gonzalez, and I. Sto-
ica. Representing long-range context for graph neural networks with
global attention. Advances in neural information processing systems,
34:13266-13279, 2021.

Z. Zamanzadeh Darban, G. I. Webb, S. Pan, C. Aggarwal, and
M. Salehi. Deep learning for time series anomaly detection: A survey.
ACM Computing Surveys, 57(1):1-42, 2024.

