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Abstract. Emotion plays a vital role in human communication,
shaping not only language but also vocal tone, facial expression,
and body posture. In the context of emotionally expressive text gen-
eration, the lack of reliable evaluation metrics still remains a key
challenge. This paper introduces a two-step evaluation framework
using embedding analogy-based metrics to assess the emotional ex-
pressiveness of large language models (LLMs). In the first step, we
evaluate the model’s ability to neutralize emotional content from a
given text while preserving its semantic meaning. In the second step,
we test the model’s capacity to reinject the intended emotion back
into the neutralized text. Our experiments demonstrate that GPT-4.1
outperforms other models in both semantic retention and emotional
reconstruction, while llama-3.3-70b-instruct performs best among
open-source models. This work lays the foundation for future re-
search on cross-modal affective computing, aiming to build emotion-
ally intelligent agents capable of nuanced and empathetic communi-
cation across text, speech, and video.

1 Introduction

Understanding and responding to human emotions is critical for Al
systems operating in professional settings, particularly in education,
where teachers and students engage in complex emotional interac-
tions. In second language (L2) learning environments, emotionally
supportive conversational agents can help teachers foster a safe and
motivating atmosphere, alleviating workload and enhancing the stu-
dent learning experience. Such systems require robust emotional un-
derstanding and generation capabilities, which are still underdevel-
oped due to fundamental challenges in emotion evaluation.

To function effectively in such roles, these systems must be ca-
pable of detecting and generating emotional content in real-life, un-
scripted scenarios. This ability is especially important in high-stakes
domains such as healthcare, education, and crisis management. In
such contexts, the ability to recognize and respond to genuine hu-
man emotions, rather than acted or exaggerated affect, is crucial
for building trust, ensuring user well-being, and improving decision-
making [30]. Recent efforts to build empathically aware Al systems
rely heavily on the generation and interpretation of affective con-
tent [38, 26, 36]. However, evaluating the emotional quality of text
generated by LLMs remains a fundamental challenge. Current eval-
uation methods for emotionally expressive text are either expensive,
when relying on human annotations, or inadequate in quality and
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generalization when using existing automatic metrics [9, 17, 44].
This limits their usefulness for scalable and robust assessment of
emotion generation models.

In this paper, we address the gap in effective and efficient evalu-
ation of emotional text generation. We propose an embedding-based
evaluation pipeline that measures emotional alignment in LLM-
generated text without requiring human labels. Our method builds
on analogical reasoning in emotion embedding spaces, incorporating
steps of emotion neutralization and re-injection to isolate and assess
the emotional expressiveness of different LLMs. We apply our eval-
uation framework to a range of state-of-the-art LLMs and find that
GPT-4.1 [29] consistently produces the most emotionally aligned
outputs. Among open-source models, LLaMA-3.3-70B-Instruct [13]
performs best. Our results demonstrate that embedding-based emo-
tion evaluation is a practical and scalable alternative to existing meth-
ods, providing a reliable benchmark for future emotion generation
tasks.

2 Related Works

Recent research has explored emotional text generation using
LLMs, with a growing interest in evaluating their ability to gen-
erate affectively aligned content. In this section, we review state-
of-the-art models and evaluation strategies for emotional control
in LLMs. Dong et al. [9] introduced continuous emotion vec-
tors to steer LLM outputs toward target affective states. For eval-
uation, they generated two synthetic datasets using GPT-40-mini
[28] and assessed performance using perplexity, topic adherence
(via prompt engineering), emotion probability score (using the
zero-shot classifier facebook/bart-large-mnli [11]), and
an emotion absolute score derived from prompt-based heuristics.
However, the prompt-based scores were not evaluated or vali-
dated, as it simply relied on the LLM’s own response to a scor-
ing prompt. Ishikawa and Yoshino [17] explored emotional ex-
pression in LLMs using the circumplex model of affect. They
fine-tuned a model on the GoEmotions dataset [8], but the re-
sulting classifier, sent imentmodel-sample-27go-emotion
[20], achieved 58.9% accuracy, which was deemed insufficient for
further use in evaluation. To circumvent the limitations of discrete
emotion classification, they instead projected the generated outputs
into the arousal-valence space. This alternative approach was imple-
mented to simplify the evaluation task, though it did not aim primar-



ily at improving reliability.

To improve emotional appropriateness in generation, Li et al. [23]
proposed emotional chain-of-thought prompting, grounded in Gole-
man’s emotional intelligence framework [12]. They argued that cur-
rent emotion recognizers are inadequate for evaluation and intro-
duced the Emotional Generation Score (EGS), a prompt-based met-
ric evaluated via GPT-3.5 [27], supplemented by a small-scale human
study with three annotators. Wang et al. [44] incorporated common-
sense reasoning to enhance empathetic dialogue generation in LLMs.
Using the EmpatheticDialogues [35] and Emotional Support Conver-
sation datasets [25], they employed traditional metrics, BLEU [31],
ROUGE-L [24], METEOR [3], Distinct-n [22], and CIDEr [43],
along with cosine similarity and human evaluation. Human evalu-
ation is valuable but costly and lacks repeatability. A disadvantage
of existing automatic metrics is that they often fall short, as lexi-
cal overlap between gold-standard and generated emotional expres-
sions remains high regardless of the actual emotional effectiveness.
Janssens et al. [18] show that even advanced models struggle to de-
tect miscommunications from facial expressions in natural human-
robot dialogue, performing no better than chance. Their findings re-
veal that users often do not express confusion in visibly detectable
ways, highlighting the limitations of current affect recognition tools,
which are predominantly trained or fine-tuned on corpora of acted,
non-naturalistic emotions and reinforcing the need for more robust,
context-aware emotion evaluation strategies.

While these studies propose creative methods for controlling
and evaluating emotional content, their reliance on unstable, non-
repeatable, or costly approaches leaves the quality assessment of
generated emotions an open challenge. Popular metrics like BLEU
and ROUGE-L are often inadequate, as lexical overlap between gold-
standard and generated emotion expressions remains high regardless
of emotional success, rendering these metrics non-discriminative.
Prompt-based LLM evaluation (e.g., using GPT-4 to judge GPT-3)
also suffers from bias and circularity, especially when assessing com-
mercial or closed-source systems. Lastly, human evaluation, while
insightful, is costly and non-repeatable.

Our study addresses these gaps by highlighting the urgent need
for robust, repeatable, and model-agnostic emotion evaluation strate-
gies that can generalize across diverse generation setups. Unlike prior
works, we initiate a neutralization—re-injection process: first strip-
ping emotions from the original dataset, then prompting models to
regenerate emotional variants. This setup enables us to evaluate mod-
els based on their capacity to reintroduce appropriate emotions while
preserving semantic content.

3 Dataset

In recent years, a growing number of multimodal emotion recogni-
tion datasets have been introduced to support research in affective
computing and emotionally intelligent systems. Notable among these
is the MELD dataset [34], which comprises multi-party conversa-
tions extracted from the Friends TV show. Although MELD provides
valuable dialogic emotion labels, it is based on acted and scripted
television content, which may not generalize well to spontaneous
emotional behaviors. Similarly, the IEMOCAP dataset [5] features
dyadic interactions between professional actors performing scripted
and semi-scripted scenarios, offering rich annotations across modal-
ities, but again lacks true spontaneity. Similar corpora for Chinese
include EmotionTalk [40] and M3ED [45] introducing large-scale,
multimodal emotion data from Chinese TV dramas and controlled
dialogues. To address the lack of spontaneous emotion data, the K-

EmoCon dataset [32] captured natural interactions during real-time
debates and provided multi-perspective annotations, including physi-
ological signals, but is limited in scale and does not cover monologue
settings. While these datasets advance the field significantly, they still
reflect contextual and cultural biases, often rely on acted emotions,
and typically do not isolate modalities during annotation, which lim-
its their utility for fine-grained unimodal vs. multimodal analysis.

These limitations, namely, the lack of spontaneous, non-acted
emotional expressions, limited diversity of monologue data, and in-
sufficient attention to isolated modality annotations, motivates the
use of new datasets designed to better reflect natural emotional com-
munication. The UniC [10] dataset is a multimodal emotion dataset
comprising 965 video clips sourced from YouTube, selected to cap-
ture natural, spontaneous emotional expressions rather than acted
performances. The videos primarily include monologues such as
book and movie reviews, where a single visible speaker expresses
emotions clearly in both speech and facial expressions. The dataset
was constructed through a multi-step filtering process using keyword
searches, sentiment-based subtitle filtering, and manual validation.
Each clip, approximately 10 seconds long, was annotated indepen-
dently across four modalities: text, audio, silent video, and all modal-
ities combined. Emotion annotations use both categorical and dimen-
sional frameworks. Initially based on 26 categorical emotion labels
from Shaver et al. [39], these were reduced to seven emotion clusters
(joy, contentment, surprise, confusion, neutral, disappointment, and
disgust) via clustering analysis, alongside valence and arousal scores.
Figure 1 shows a sample from the UniC dataset.
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but like, in a good way, not shockingly bad, shockingly absurd.
I experienced a really visceral and physical response to it. Like,
it was making my whole body tense and cringe by how wild it
is, and also quite disgusting at times.

Figure 1. A video clip example from the UniC dataset

For our experiments, we focused on the text modality as a step-
ping stone to multimodal emotion expression generation in follow-
up research. Noteworthy to mention is that for this text modality,
the inter-annotator agreement (IAA) was highest, reaching a Fleiss’
kappa of 0.47 after annotator training and emotion clustering. Among
the different labeled emotions, emotions such as confusion and sur-
prise were less reliably detected from text alone, highlighting the
added value of multimodal signals. We evaluated the text modality of
the UniC dataset using several baseline models, for which we used
100% of the dataset for testing. Due to the limited size of the dataset,
we employed 5-fold cross-validation for training and evaluating our
custom model.

As shown in Table 1, our model does not achieve the highest per-
formance across any metric. Among the evaluated models, michelle-
Jjieli and j-hartmann are fine-tuned emotion classifiers based on the
DistilRoBERTa-base [37] architecture. The bart-large-mnli model, a
zero-shot classifier built on the BART-large [21] transformer, is used
without fine-tuning. The gpt-40-mini model, on the other hand, is an
LLM that predicts emotions through prompt-based reasoning. No-



Table 1. Evaluation results of various models for emotion recognition on
the UniC dataset. Emotion recognition on real conversational data is
inherently challenging; for instance, the best model here (gpt-40-mini)
achieves an F1-score of only 35.79%, substantially lower than the 60.25%
commonly seen on acted datasets like MELD.

Method Accuracy Precision Recall F1

gpt-4o-mini [28] 0.4046 0.3765 0.4496  0.3579
michellejieli [14] 0.4492 0.4205 0.3095  0.3301
j-hartmann [15] 0.3880 0.4098 0.3724  0.3268
bart-large-mnli [11] 0.1639 0.3084 0.3470  0.1585
Our model 0.3885 0.3204 0.3068 0.3134

tably, michellejieli achieves the highest accuracy (0.4492) and preci-
sion (0.4205), while gpt-40-mini performs best in recall (0.4496) and
F1 score (0.3579). Our approach, which combines BAAT-bge-m3
embeddings [7] with a tuned Random Forest classifier [4], yields
moderate but consistent results across all metrics because it just
trained on UniC dataset(772 training samples). The classifier’s hy-
perparameters are shown in Table 2. It is important to highlight that
these relatively low performance scores are primarily due to the na-
ture of the dataset, which consists of natural, non-acted emotional
expressions.

Table 2. Hyperparameters used for the Random Forest classifier with
BAAI-bge-m3 embeddings.

Hyperparameter Value
n_estimators 316
max_depth 488
min_samples_split 50
criterion gini

class_weight balanced_subsample

4 Methodology

Emotional text generation and its evaluation have been less explored
through analogical methods, despite their proven utility in measuring
structured semantic relations. Chen et al. [6] systematically analyzed
vector-based analogies, confirming their reliability in capturing such
relations, and Zhu and De Melo [46] extended analogical reasoning
to contextualized sentence embeddings, showing that some models
preserve analogical structures at the sentence level. To our knowl-
edge, no prior work has applied analogy-based evaluation specifi-
cally to the assessment of emotional expressiveness in generated text.

Building on these insights, our methodology employs analogy-
based evaluation to quantify the emotional expressiveness of LLMs.
To rigorously isolate the model’s generative capabilities, we begin
by neutralizing the emotional content of each ground-truth (GS) text
in our dataset using an LLM. Following neutralization, the model is
prompted to regenerate the emotional version of each text. The neu-
tralization step is crucial: by comparing the regenerated emotional
outputs with the original GS emotions, we ensure that any observed
affective content arises from the model’s learned patterns rather than
residual cues in the input. Finally, we compute embedding-based
similarity and analogy metrics between the GS and regenerated texts,
enabling quantification of both semantic fidelity and emotional align-
ment.

4.1 Embedding Evaluation Metric

Before focusing on the embedding evaluation metric, we should
mention that all embeddings were calculated using the BGE-M3 [7]

language model, and the 2D space was generated using the t-SNE
[42] method applied to the BGE-M3 embedding space.

In our embedding evaluation metric, we draw inspiration from the
well-known linguistic analogy: “king - man + woman ~ queen”.
This example illustrates how word embeddings can capture semantic
relationships through vector arithmetic [2]. By representing words as
vectors in a high-dimensional space, operations such as subtraction
and addition can reveal underlying relationships, such as gender or
emotional tone. This property enables the assessment of emotional
quality in generated text by analyzing geometric relationships be-
tween word vectors, offering a quantitative measure of emotional ex-
pressiveness in language models. Figure 2 visually demonstrates this
concept, showing how vector operations can encode semantic rela-
tionships in the embedding space.
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Figure 2. A hand-drawn illustrative example of the "King and Queen’
analogy in an ideal embedding space.

In Figure 2, the length and direction of the vectors W (king) —
W (queen) and W (man) — W (woman) appear to be the same. How-
ever, this does not reflect reality. In a realistic scenario, we would
expect the vector W (king) — W (man) + W (woman) to be close
to W(queen). Using BGE-M3, we calculated the embeddings for
queen, king, man, and woman. As shown in Figure 3, the expres-
sion W (king) — W {(man) + W (woman) is not exactly equal to
W (queen), but it is close.

Word Embeddings in 2D Space
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Figure 3. 2D visualization of word embeddings using t-SNE. The vector
W (king) — W (man) + W (woman) lies near W (queen), illustrating a
plausible semantic relationship in the reduced space.

4.1.1 Cosine Similarity vs. Manhattan Distance

A common method for measuring similarity between two vectors is
the cosine similarity metric. However, in analogy tasks, this method
has a major limitation: the results can vary based on the operation



order. Consider the analogy: king is to queen as man is to woman.
The similarity and distance scores for various formulations are sum-
marized in Table 3.

Table 3. Comparison of cosine similarity and Manhattan distance for
different analogy vector operations.

Pair Cosine Similarity = Manhattan Distance
(king, queen) 0.7119 19.2969
(man, woman) 0.6343 21.7031
(man, woman — queen + king) 0.7188 19.5469
(woman, man — king + queen) 0.7461 19.5469
(king, queen — woman + man) 0.7368 19.5469
(queen, king — man + woman) 0.7759 19.5469

As shown in Table 3, different operation orders produce varying
cosine similarity scores, revealing inconsistency in the evaluation of
the cosine-based analogy. In contrast, the Manhattan distance pro-
duces stable results across all permutations, indicating its robustness
for analogy reasoning tasks. Due to its consistent behavior, we fur-
ther used the Manhattan distance for the analogy evaluation in our
experiments.

4.1.2 Real Emotional Example

To better understand the role of emotional analogy in our framework,
we illustrate a representative example from our experiments. The
goal is to analyze how vector arithmetic in the embedding space can
capture shifts in emotional expression between sentences. Figure 4
visualizes this example. The corresponding text for each variable in
the figure is as follows:

Joy = “joy”

neutral = “neutral”

neutral_sent = “It’s my first day as a student”

joy_sent = “I’'m so happy, it’s my first day as a student!”

In the Figure 4, we observe that the distance between the
neutral and joy emotion embeddings is relatively large. This dis-
crepancy poses a challenge for emotional analogy, as the semantic
distance between the two sentence embeddings (neutral_sent
and joy_sent) is significantly smaller than the distance between
their corresponding emotion labels. To mitigate this, we construct an
analogy vector using the following equation:

analogy_vector = neutral — neutral_sent + joy_sent (1)

This vector is then compared with the joy embedding. As shown
in the Figure 4, the analogy vector lies closer to joy than neutral,
indicating that the analogy operation effectively captures the in-
tended emotional shift.

Recognizing emotions in real user utterances is particularly chal-
lenging due to their subtle and nuanced nature. As shown in Table 1,
the best model achieves an Fl-score of only 35.79%, significantly
lower than the 60.25% observed on acted datasets like MELD [34].
To further investigate this phenomenon, we visualized the semantic
structure of emotion representations using the BGE-M3 embedding
model. Figure 5 shows a 2D projection of both the emotion label
embeddings and the average embeddings of real user utterances as-
sociated with each emotion. In this plot, each circle represents an
emotion label (e.g., joy, disgust, neutral), and each square denotes
the average embedding of utterances tagged with that emotion. Two
sets of relationships are highlighted:

Emotion Embeddings in 2D Space
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Figure 4. Visualization of emotional analogy in the embedding space. The
plot shows the positions of the neutral, joy, and sentence embeddings
(neutral_sent and joy_sent) in the embedding space.

e Red lines connect the embedding of the label neutral to other
emotion labels.

e Green lines connect the average embedding of utterances labeled
as neutral to the average embeddings of utterances for other emo-
tions.

The figure reveals that while the emotion labels are well-separated
in the embedding space, indicating clear semantic distinctions, the
average embeddings of real user expressions are clustered more
closely together, especially around the neutral region. This supports
the idea that emotional language in real interactions is often more
subtle, making automatic emotion detection more challenging in nat-
ural contexts.

20 Visualization of Emotion Embeddings
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Figure 5. 2D projection of emotion embeddings using t-SNE. Circles
represent the embeddings of emotion labels (e.g., joy, neutral), while squares
represent the average embeddings of real user utterances associated with
each emotion. Red lines show distances from the neutral label to other
labels, and green lines show distances from the average neutral embedding
to other emotion averages.

To better understand how emotional meaning is encoded in sen-
tence embeddings, we explore the relationship between labeled and
unlabeled emotional expressions. Specifically, we aim to approxi-
mate the embedding of an emotionally tagged utterance using its neu-
tral version and the emotional shift encoded in a semantically aligned
sentence. Here, labeled emotion refers to utterances that include di-
rect emotion labels from the gold-standard data in UniC dataset (e.g.,
“I’m so happy, it’s my first day as a student! (joy emotion)”), while



unlabeled emotion refers to emotionally expressive content without
such tags but still conveying affect (e.g., “I’'m so happy, it’s my first
day as a student!”). Neutral versions are affectively flat and omit
emotional cues.

Our approach applies an analogy-style vector transformation of
the form: neutral — neutral_sent + Jjoy_sent, where
neutral_sent and joy_sent are the neutral and emotionally
expressive versions of the same utterance. This transformation en-
riches the affective content of the neutral-tagged embedding by in-
jecting the emotional variation from the unlabeled expression, while
preserving the shared semantic structure. The goal is to reduce the
distance between the synthesized embedding and its explicitly emo-
tional counterpart, effectively revealing how emotional meaning can
be reconstructed through compositional operations. Figure 6 visu-
alizes this transformation. The green arrow illustrates the analogy
vector described above, and the dashed lines indicate the proximity
between the predicted and actual emotion embeddings. The text as-
sociated with each vector in the figure is as follows:

e joy = “I'm so happy, it’s my first day as a student! (joy emotion)”
e neutral = “It’s my first day as a student (neutral emotion)”
e neutral_sent = “It’s my first day as a student”

e joy_sent = “I'm so happy, it’s my first day as a student!”

Emotion Embeddings in 2D Space
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Figure 6. Visualization of emotion-related embedding transformations.
The green arrow represents the analogy vector neutral -
neutral_sent + joy_sent, used to approximate the emotional
embedding. Dashed lines indicate proximity between the original and
approximated vectors.

4.2 Emotion Embedding Extraction Using Prompted
Text Templates

As discussed in Section 4.1.1, we use Manhattan distance as our
similarity metric due to its sensitivity to subtle semantic variations
in the embedding space. This metric is essential for evaluating how
emotional content can be manipulated while preserving the original
meaning. Our goal is to identify the most effective prompt template
for extracting emotion embeddings from textual descriptions. These
embeddings, denoted as E,, E,, and E;, represent the original, neu-
tral, and target emotional states, respectively. By inserting emotion-
related phrases into structured prompt templates, we derive these
embeddings for use in analogy-based transformations. The transfor-
mation involves two steps: neutralization and emotionalization. Let

So, Sn, and St be the sentence embeddings for the original, neutral,
and target emotional versions of the same sentence. Let MD(A, B)
denote the Manhattan distance between embeddings A and B. The
neutralization step tests whether removing the original emotion and
inserting the neutral emotion embedding moves it closer to Sy, :

MD(So, Sn) > MD(S, — Eo + En, Sy) 2

The emotionalization step checks whether inserting the target
emotion into the neutral embedding moves it closer to S:

These conditions validate whether modifying sentence embed-
dings via emotional vectors steers them toward the intended emo-
tional states. A transformation is deemed successful when both in-
equalities are satisfied.

System Prompt 1: Text Neutralization

Your task is to neutralize the text by removing emotional expressions.

The text is a transcription of a video.

The text may contain emotional expressions.

The text should be neutral and not contain any emotional expressions.
The text should be in the same language, format, style, tone, and context as
the input text.

Please try to change the text as little as possible.

Please neutralize the following text: {text}

The original emotion of the text is: {emotion}

Please make sure to remove all emotional expressions from the text.

System Prompt 2: Emotional Text Generation

Your task is to make the text more emotional by adding emotional expres-
sions.

The text is a transcription of a video.

The text should be in the same language, format, style, tone, and context as
the input text.

Please try to change the text as little as possible.

Don’t mention the emotion in the text directly.

Please add emotional expressions to the following text: {text}

The current emotion of the text is: neutral.

The target emotion of the text should be: {emotion}.

\. J

To identify the most effective prompt template for extracting emo-
tion embeddings, we evaluated five candidate prompt formulations
across several LLMs. These templates vary in how they contextu-
alize emotion labels with respect to the text, ranging from labeled
structures (e.g., “joy emotion: {text}”) to minimal expressions (e.g.,
just “joy”).

Our evaluation follows a two-step analogy-based framework. In
the neutralization step, we generated neutral versions of emotional
sentences using each LLM with a fixed system instruction based on
System Prompt 1. To extract the emotion embeddings F, and F,
used in Equation 2, we tested the five emotion prompt templates by
plugging them into an embedding encoder. In the emotionalization
step, we used System Prompt 2 to generate emotionalized sentences
from neutral ones and evaluated how well each emotion prompt tem-
plate performed using Equation 3 with the target emotion embed-
ding E. The followings are the details about the emotion embedding
prompts:

Prompt 1: {emotion} emotion: {text}

Prompt 2: This content has {emotion} emotion: {text}
Prompt 3: {text} ({emotion} emotion)

Prompt 4: {emotion}

Prompt 5: This content has {emotion} emotion

As shown in Table 4, we identify the best-performing emotion
prompt template for each step of the evaluation. Using the entire



Table 4. Performance of different LLMs and prompt templates in analogy-based emotion embedding evaluation. Each cell shows the percentage of samples
that satisfied the analogy inequality in the neutralization (left) and emotionalization (right) steps.

Model Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5

gemma-3-1b-it [41] 98.96/100.00  98.76 / 100.00 99.79/96.00 33.82/28.00 33.82/24.00
llama-3.1-8b-instruct [13] 98.96/100.00  97.51/99.90  100.00/100.00 37.86/53.22  36.62/43.15
mistral-nemo-12b-instruct [1]  98.96 /99.90 95.85/799.90 99.69/100.00  38.49/5830 37.55/45.12
llama-3.3-70b-instruct [13] 99.38/99.48 98.96/99.38 100.00/100.00  37.14/57.47  36.20/45.64
gpt-4.1 [29] 99.07 /98.96 96.58/95.95 99.59/99.48 48.55/78.42 41.80/59.44
gpt-4o-mini [28] 99.48 / 99.90 98.34/99.90 99.90/100.00  34.75/76.04  34.65/58.20
Average 99.13/99.71 97.67/99.17 99.83/99.25 38.44/58.57 36.77/45.93

text-only UniC dataset for evaluation, we conduct experiments on
two tasks: neutralization and emotionalization. For neutralization,
Prompt 3 achieves the highest analogy satisfaction rates across most
models. For emotionalization, Prompt 1 performs best, indicating its
effectiveness in reintroducing emotional content through embedding
manipulation. These findings suggest that different prompt styles
may be optimal for extracting emotion embeddings depending on the
specific transformation goal.

5 Analysis and Results

Having decided on the Manhattan Distance to compare the embed-
ding vectors (Section 4.1.1) and on using distinct prompt templates
for extracting emotion embeddings depending on the transformation
stage (Section 4.2), we set up an experiment in which our goal was
to evaluate the impact of emotion generation by comparing the orig-
inal emotional data with the emotionally re-generated text. Specifi-
cally, we used Prompt 3 for the neutralization stage and Prompt 1
for the emotionalization stage, as each achieved the highest analogy
satisfaction rates for their respective tasks across most models. To
enable a broad comparison, we evaluated a range of LLMs, includ-
ing open-source models such as Gemma [41], LLaMA-3 [13], and
Mistral-NeMo [1], as well as commercial models like GPT-4.1 [29]
and GPT-40-Mini [28] from OpenAl. This mix allowed us to assess
the effectiveness of emotion embedding manipulation across both ac-
cessible, community-driven models and state-of-the-art proprietary
systems. All evaluations are on the UniC dataset’s text modality. The
process consisted of the following two main steps:

5.1 Neutralization

We used an LLM to neutralize the emotional content of the orig-
inal text samples. This step aimed to remove any labeled or unla-
beled emotional signals, resulting in emotionally flat, semantically
preserved text. In this experiment we used System Prompt 1. The
following formulas were used in the tables to evaluate the perfor-
mance of different models. In these equations, A denotes the analogy
vector.

A:En_5n+50

R1. = cos(E,, Er),
le = ||Eo - Eth

R2. = cos(E,, A)
R2,, = ||Es — Al

As shown in Table 5, we evaluate each LLM’s ability to perform
emotional neutralization based on how well the transformed sen-
tence embedding aligns with the original emotional context vector.
The evaluation uses both cosine similarity and Manhattan distance to
capture different aspects of embedding relationships. In both cosine
similarity and Manhattan distance metrics, GPT-4.1 demonstrates
the most controlled and semantically faithful emotion neutralization

among all evaluated models. While llama-3.3-70b-instruct achieves
the highest post-neutralization cosine similarity (R2, = 0.9746) and
lowest Manhattan distance (R2,, = 5.33), GPT-4.1 yields the small-
est changes in both cosine (AR, = 0.0410) and Manhattan met-
rics (AR, = —3.297), indicating minimal semantic distortion dur-
ing transformation. This suggests that GPT-4.1 preserves original
sentence meaning more effectively while removing emotional con-
tent. Overall, while high-capacity open-source models like mistral-
nemo-12b-instruct are increasingly competitive, commercial mod-
els such as GPT-4.1 still lead in performance when performing nu-
anced tasks like emotion neutralization.

Table 5. Evaluation results of LLMs for emotion neutralization. R1/R2:
before/after transformation. Subscripts m/c: Manhattan/Cosine.

Model Rlm R2n, ARm | Rl R2. ARc

gemma-3-1b-it [41] 16.160  7.484 -8.670 | 0.7734  0.9536  0.1802
Ilama-3.1-8b-instruct [13] 10.180 5965 -4.215 | 09106 0.9683  0.0576
mistral-nemo-12b-instruct [1] ~ 9.640 5785  -3.855 | 0.9185 0.9690  0.0508
llama-3.3-70b-instruct [13] 13.414 5330 -8.086 | 0.8370 0.9746  0.1377
gpt-4.1 [29] 8920 5.625 -3.297 | 0.9290 0.9700  0.0410
gpt-4o0-mini [28] 11.990 6450 -5.543 | 0.8790 0.9644  0.0855

Table 6 shows the emotion-wise results for GPT-4.1 neutraliza-
tion. The neutral category exhibits the smallest changes in both Man-
hattan distance and cosine similarity, reflecting that converting orig-
inally neutral utterances to neutral is inherently easier. In contrast,
other emotions require more substantial transformations to remove
affective content while preserving meaning, resulting in larger em-
bedding changes.

Table 6. Emotion-wise evaluation results of GPT-4.1 [29] for emotion
neutralization. R1/R2: before/after transformation. Subscripts m/c:
Manhattan/Cosine.

Emotion Rl R2; ARpm | Rl R2. AR

confusion 9.650  7.254 -2.395 | 0.9224 0.9565 0.0342
joy 10.010  6.453  -3.555 | 09175 0.9663  0.0488
neutral 6.266  2.521  -3.744 | 09630 0.9946 0.0317
disgust 11.760  8.164  -3.594 | 0.8857 0.9460  0.0601
contentment 9.870  7.016 -2.852 | 09190 0.9590  0.0400
disappointment  10.410  7.414  -2.992 | 0.9097 0.9560  0.0464
surprise 10.600 7227  -3.375 | 09062 0.9580 0.0518

To evaluate the consistency between different similarity metrics,
we computed the Pearson correlation [33] between the Manhattan
distance and Cosine similarity values for both R2 and R1 scores.
As shown in Figure 7, there is a very strong negative correlation
between the two measures for both R2 (r = —0.99365) and R1
(r = —0.99501). These results indicate that as the Manhattan dis-
tance increases, the Cosine similarity decreases almost linearly, sug-
gesting that both metrics are capturing highly similar trends in eval-



uating the transcripts, albeit in opposite directions due to their differ-
ent mathematical formulations.

R2m vs R2.c ( = 0.99365) RLm vs RLc (r = 0.99501)

Figure 7. Scatter plots showing the relationship between Manhattan
distance and Cosine similarity for R2 (left) and R1 (right) metrics. Each
point represents the result of a different LLM on the UniC dataset. A
regression line is included in each subplot to visualize the correlation.

5.2 Emotion Injection

In the emotion injection phase, we used an LLM to reintroduce a tar-
get emotion (e.g., joy) into the neutralized text. To guide this process,
we prompted the model using system-level instructions and emotion-
specific cues. The goal was to generate emotionally expressive text
that closely resembles the original emotional content while preserv-
ing the core semantics of the neutralized version. In this experiment
we used System Prompt 2. To perform the re-injection, we compute
the analogy vector A based on the following relationship:

A=FE;— S+ S
R1. = cos(En, Et),
R2. = cos(En, A),
R3c = cos(S,, St),

Rl = |Ea — Edlx
R2y = | Ea — Al
R3,0 = S5 - Sl

Table 7 shows the performance of various LLMs in emotion in-
jection. GPT-4.1 achieves the best results overall, with the lowest
distances and highest cosine similarities (e.g., R3m = 9.99, R3. =
0.9130), indicating strong emotional alignment and reinjection abil-
ity. In contrast, gemma-3-1b-it performs the weakest, especially in
re-injection quality (R3. = 0.6990). While commercial models like
GPT-4.1 and GPT-40-mini outperform others due to superior train-
ing and architecture, larger open-source models such as LLaMA-3.3-
70B and Mistral-Nemo-12B show competitive performance, suggest-
ing that open models can still be effective in emotion-aware tasks.

Table 7. Evaluation results of LLMs for emotion injection. R1:
neutral-target emotion, R2: analogy vector, R3: original-re-injected
sentence. Subscripts m/c: Manhattan/Cosine.

Model Rln R2;, ARp R3n | Rlc R2, AR R3¢

gemma-3-1b-it [41] 15560  9.190 -6.375 18.890 | 0.7930  0.9287  0.1357  0.6990
Ilama-3.1-8b-instruct [13] 12.125  6.824  -5.301 13.830 | 0.8740 0.9590 0.0850  0.8374
mistral-nemo-12b-instruct [1] ~ 12.164 ~ 6.625 -5.539  13.390 | 0.8740 0.9610  0.0869  0.8486
1lama-3.3-70b-instruct [13] 12950 5824 -7.126 13290 | 0.8486 0.9700 0.1216  0.8496
gpt-4.1[29] 8.086 5470 -2.617  9.990 0.9310 09680  0.0366  0.9130
gpt-4o-mini [28] 10390  6.016 -4.375 13.414 | 09077 0.9670 0.0591  0.8500

Table 8 reports emotion-wise performance of GPT-4.1 on the emo-
tion injection task. The model performs consistently across all emo-
tions, with strong alignment scores (e.g., R3. > 0.88) and small Man-
hattan distances. Notably, the neutral class achieves the best results
(R3. = 0.9280, R1,, = 2.30), which is expected since the model is
converting a neutralized utterance back to a neutral form, making the
reinjection task considerably easier in this case.

To further validate the metric alignment, we conducted a corre-
lation analysis between Manhattan distance and cosine similarity
across the three relations (R1, R2, R3). All pairs exhibit strong nega-
tive correlations below —0.9819, confirming the inverse relationship

Table 8. Emotion-wise evaluation results for GPT-4.1 in emotion injection.
R1: neutral-target emotion, R2: analogy vector, R3: original-re-injected
sentence. Subscripts m/c: Manhattan/Cosine.

Emotion Rlpn R2, ARy, R3m | Rl R2. AR, R3¢

surprise 11.766 ~ 7.688 -4.078 11.410 | 0.8870 0.9517 0.0645 0.8920
disgust 12200 8480 -3.720 11.610 | 0.8780 0.9414 0.0635  0.8860
confusion 10.734 7977 2757 10.160 | 0.9060 0.9480 0.0425 0.9140
contentment 10490  7.598  -2.892 9.970 0.9097 09517  0.0420 0.9160
neutral 2.303 1225  -1.078 8.920 0.9920  0.9980  0.0059  0.9280
joy 11.000 7242 -3758 10.164 | 0.9010 0.9575 0.0566 0.9126

disappointment ~ 11.230 ~ 7.477  -3.753 10990 | 0.8975 0.9546 0.0571  0.8975

between the two metrics (see Figure 8). These results confirm that in-
creased directional similarity corresponds closely with reduced em-
bedding distance, validating the use of both metrics to quantify emo-
tional fidelity in the reinjection process.

R2m vs R2_c r = -0.98662) R1mvs RLc (r = 098195) R3.m s R3¢ (r = 099212)

Figure 8. Scatter plots showing correlation between Manhattan distance

and Cosine similarity for R1, R2, and R3 embedding relations. Each point

represents the result of a different LLM on the UniC dataset. A regression
line is included in each subplot to visualize the correlation.

6 Conclusion and Future Works

In this study, we explored the capability of LLMs to manipulate
and generate emotionally expressive text through a two-step pro-
cess: emotional neutralization followed by targeted emotion injec-
tion. Using embedding-based similarity metrics such as Manhattan
distance and cosine similarity, we quantitatively evaluated the extent
to which LLMs can remove and reintroduce specific emotions while
preserving the semantic core of the original text. Our findings in-
dicate that GPT-4.1, a commercial model, consistently outperforms
other models in maintaining semantic fidelity and accurately recon-
structing emotional nuances. Among open-source models, LLaMA-
3.3-70B-Instruct demonstrates the best performance in our experi-
ments, making it a strong candidate for accessible, open research in
emotion-aware language generation. These results underscore the ef-
fectiveness of large-scale LLMs for emotion control and expression
in text and provide a foundation for broader affective computing ap-
plications. Although our current focus is on the text modality, the
proposed framework is explicitly designed to extend to speech and
visual channels by leveraging shared embedding spaces. In particu-
lar, recent work by Jha et al. [19], which builds upon the Platonic
Representation Hypothesis introduced by Huh et al. [16], demon-
strates that as neural networks scale, internal representations across
modalities converge toward a shared statistical model of reality. This
convergence enables cross-modal affective analysis without requir-
ing paired training data, providing a strong theoretical and practical
foundation for our future work.

In addition to aligning emotional content across text, speech, and
visual modalities within unified embedding spaces, our future efforts
will also involve improved prompt engineering and the development
of more expressive embedding models to enhance emotional trans-
formation capabilities. As a concrete application, we aim to develop
a multimodal empathetic conversational agent for second language



(L2) learning. By engaging students in emotionally supportive inter-
actions, such agents can foster psychologically safe and motivating
learning environments while assisting teachers in managing affective
dynamics in the classroom.
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