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Abstract. We present a next-purchase recommendation system
that combines advanced algorithms with explainable Al (XAI) to
learn individual customer preferences from purchase histories and
deliver personalized recommendations that enhance user engage-
ment and inform marketing strategy. Our approach provides dual-
layer, multistakeholder explanations: targeted communications that
promote personalized marketing messages for customers and strate-
gic insights for business stakeholders (e.g., marketing departments),
reducing cognitive load and fostering trust. The system also ad-
dresses cold-start scenarios and leverages implicit feedback. Exper-
iments on the MovieLens dataset demonstrate a balanced trade-off
between accuracy, novelty, and explainability, potentially lowering
users’ decision-making effort.

1 Introduction

In professional contexts, Al supports managers by meeting infor-
mation demands during decision making and reducing cognitive
load [29]. Our focus is on recommendation systems, studied for
decades and popularized by platforms like Amazon and Netflix, yet
requiring more than mere suggestion generation. Modern recom-
mendations should not only match user preferences but also surface
unexpected and novel items—so-called serendipitous recommenda-
tions [[15} [1]. Trustworthiness is essential in the increasingly pop-
ular multistakeholder environments, where end-users and business
stakeholders interact [6], so recommendation systems must explain
their predictions [9] and address user-facing transparency alongside
stakeholder goals [23]. Thus, we focus on two stakeholder groups:
(1) end-users (e.g., students on an e-learning platform, readers on a
news site, or shoppers using a retail app, who directly receive and
act on recommendations), and (2) business stakeholders (e.g., ser-
vice providers, system owners, marketers, system administrators, or

* Corresponding Author. Email: m.mozolewski @uj.edu.pl.
** Email: honorata.zych@doctoral.uj.edu.pl.

*** Email: sabri.manai @doctoral.uj.edu.pl.

4% Email: krzysztof.kutt@uj.edu.pl.

Rk Email: grzegorz.j.nalepa@uj.edu.pl.

curriculum designers in an educational context).

This article is part of the PEER — The Hyper-Expert Collabo-
rative Al Assistant projecﬂ an EU-funded Horizon Europe initia-
tive redefining human—AI collaboration for complex decision mak-
ing through user-centered design, dynamic engagement, and trans-
parent reasoning. PEER develops Al solutions for manufacturing,
warehouse management, and smart inclusive cities, with recommen-
dation and preference modeling among its core research areas. Al-
though we propose an explainable recommendation system for a re-
tail use case, limited pilot data were not used in this study. Our work
also aligns with the 2025 Workshop on "Al for understanding hu-
man behavior in professional settings" (BEHAIVﬂ which empha-
sizes understanding experts’ information demands during decision
making and reducing cognitive load via explanatory Al to enhance
safety and satisfaction at work.

Our contributions are:

e An end-to-end framework uniting diverse ML models, hybrid
serendipity mechanisms and XAl to support collaborative deci-
sion making.

e Tailored multistakeholder explanations for end-users (e.g., cus-
tomers) and business stakeholders (e.g., system owners).

e A retail recommendation tool that learns individual preferences to
provide clear, context-aware product suggestions for in-store ful-
fillment, with simple explanations and built-in support for novelty
and cold-start cases.

The rest of the paper is organized as follows: Section [2] covers
background; Section |3| describes system architecture, data prepro-
cessing steps, and the models; Section[z_l] details the dataset, evalua-
tion protocol, performance metrics and reports both quantitative and
qualitative findings, including model comparisons, cold-start analy-
sis, and explanation examples; Section [] analyzes trade-offs, limi-
tations, and practical implications; Section E]concludes and outlines
future work; finally, Section [7]acknowledges support.
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2 Related Work and Background

The first traces of the recommendation problem in scientific lit-
erature appeared in 1978 with the paper [27], which proposed a
rule-based system. Subsequnetly, several other classical methods
were introduced including collaborative filtering [[13]], content-based
filtering[[17] and association rule-based approaches [14]. A common
feature of this classical recommendation algorithms is their highly
interpretable nature. Explanations can be easily derived from rules
themselves [27], listing what similar users have purchased [8l [13] or
providing confidence ranking scores for similar items [17].

As deep learning models began to gain significant attention, they
were also adopted for the recommendation problem [30]]. A variety
of architectures have since been explored, including autoencoders
[24} 21]], graph neural networks[11], and transformer-based models
[7]. These models excel at capturing complex and higher-order rela-
tionships. However, their increased complexity makes them opaque
"black boxes", so researchers use popular model-agnostic techniques
like SHAP [[19,21]] and LIME [21] for explanation. In addition, coun-
terfactual explanations have emerged as a promising direction, of-
fering insights by showing how slight changes in input could alter
recommendation outcomes [31} 26l |5]].

Explanations enhance transparency, build trust, and support ac-
ceptance in recommender systems, aligning with the XAI Mani-
festo’s call for transparency, accountability, and understandability
[18]. Classical approaches provided straightforward justifications:
rule-based systems explained outcomes through explicit logic[27]];
collaborative filtering offered transparency by referencing the ac-
tions of similar users - for example, explaining a recommendation
with “users similar to you liked this item” [[13 [8]. Content-based
methods highlighted shared item attributes - “this item is recom-
mended because it shares features with items you liked” or confi-
dence scores [8} [17]]. Social explanations, such as neighbor ratings,
their similarity to the user, and temporal dynamics, further enriched
user trust [[13| [8]. To demystify the decision-making of black-box
models, model-agnostic tools such as SHAP and LIME are often
employed, typically using plot-based visualizations to show feature
contributions. Recent advances also incorporate large language mod-
els (LLM) to translate these explanations into more accessible nat-
ural language summaries [19]. Counterfactual explanations, often
presented in natural language, offer another powerful approach, il-
lustrating how slight changes in user behavior or preferences might
lead to different outcomes [8| 17, [19]]. Beyond textual or statistical
formats, visual explanation methods have gained attention. These in-
clude word clouds that emphasize relevant terms [17, 4], "tagspla-
nations" that interpret recommendations via users’ sentiment toward
descriptive tags and tag relevance [28], and graph-based visualiza-
tions that depict items and preferences as interconnected nodes and
edges, thereby tracing the semantic or behavioral logic behind rec-
ommendations [8} 14]. Together, these diverse strategies reflect a shift
from merely generating recommendations to constructing rich, mul-
timodal explanations that are transparent and user-centered.

Recommender systems often operate in multi-sided environments
where users, product providers, and platform owners have distinct -
sometimes conflicting - goals. Traditional algorithms typically prior-
itize user utility, overlooking broader stakeholder objectives [2].

To address this, multistakeholder recommendation systems [6] ex-
plicitly model and balance the interests of users, providers, and plat-
forms. This is especially important in platforms like eBay, Etsy, or
Airbnb, where sustained engagement from all parties is critical to
long-term success [3].

Despite growing interest in explainability, multistakeholder expla-
nations remain underexplored, with few studies addressing how to
tailor them to different stakeholder needs. [23] in their study on job
recommender systems, draw from the literature the idea that expla-
nations should either be individually tailored to each stakeholder, or
that a single explanation may be adapted in presentation depending
on the stakeholder’s level of expertise. Building on this, they ex-
plored several explanation modalities suited to different roles, includ-
ing graph-based visualizations (showing weighted paths in a knowl-
edge graph), LLM-generated textual summaries, and feature attribu-
tion bar charts. Their results show clear preferences among stake-
holder types: candidates favored short textual explanations for quick
judgment, hiring managers preferred graph-based views for a more
technical overview, and recruiters benefited most from detailed tex-
tual narratives. In a related contribution, [10] examined explanation
strategies in enterprise decision-making and identified counterfac-
tual explanations as particularly effective in multistakeholder con-
texts, as they enhance transparency while safeguarding stakeholder
privacy and preference sensitivity. Together, these findings point to-
ward the need for adaptive, role-sensitive, and privacy-aware expla-
nation frameworks, a topic still in its early stages of research.

3 Methodology

Recommendation systems personalize experiences using historical
and interaction data, yet often optimize only one goal. Our proposal
introduces a transparent, multistakeholder workflow: it employs user
profiles to train models, generates dual XAl explanations for con-
sumers and managers, and applies business-rule filtering to deliver
trusted recommendations. We used the Cornac framework [22] for
its support of multiple recommendation approaches and explainabil-
ity. The selected models represent distinct algorithmic paradigms,
enabling comparison in terms of ranking quality and runtime effi-
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Figure 1. High-level architecture of the transparent, multistakeholder

recommendation system.



The Figure [I] illustrates recommendation process as proposed by
us: first, the model is trained using historical user profiles; next, new
user data is fed into the trained model to generate a set of candidate
recommendations. These recommendations are then passed through
an explanation module, which produces human-readable rationales
for each suggested item. After explanations are generated, business
rules (defined by business stakeholders; but also end-user needs and
preferences) are applied to filter out ineligible products. Finally, the
system delivers the filtered items and their explanations directly to
the end-user, while simultaneously presenting a higher-level system
explanation to business stakeholders.

3.1 Model Training and Hyper-parameter Tuning

All experiments were executed in Google Colab notebooks with the
Cornac framework [22]], which supplies unified routines for data
loading, model optimisation, and evaluation.

The data source was the MovieLens 100K implicit-feedback ma-
trix. This dataset resembles the proprietary data collected in the
PEER project (shopping baskets), but those could not be used due
to confidentiality restrictions imposed by the PEER project use-case
owner at the time of writing. It was partitioned into training, vali-
dation, and test subsets in a 70 : 20 : 10 ratio by the framework’s
RatioSplit utility, and ratings of four or higher were treated as posi-
tive interactions.

Model definitions. To ensure robust performance on sparse
implicit-feedback data, we selected four state-of-the-art recom-
menders spanning the main paradigms. These include Bayesian Per-
sonalized Ranking (BPR) [20]], Matrix Factorization (MF) [16], Hi-
erarchical Poisson Factorisation (HPF) [[12]], and a Variational Auto-
Encoder for Recommendations (RecVAE) [25], all implemented via
their corresponding Cornac model classes.

Evaluation metrics. Five ranking metrics and two runtime mea-
sures are used throughout the study. AUC is the probability that a
randomly chosen positive interaction (rating > 4) is ranked ahead
of a randomly chosen negative one. MAP averages, across users,
the precision observed at each relevant item, rewarding early hits.
NDCG @ ]0 normalises discounted cumulative gain at rank ten by the
ideal DCG, so higher values mean that relevant items appear nearer
the top. Precision@ [0 is the fraction of relevant items in the first ten
positions, whereas Recall@ 10 is the fraction of each user’s relevant
catalogue retrieved within that cut-off. Runtimes are also logged: a
single Time (s) during validation, and separate Train (s) and Test (s)
columns for the final evaluation.

Tuning strategy. Only the latent dimension was varied, running a
grid search for each model, and HPF achieved its highest validation
AUC at k=19. This single-parameter sweep served the dual purpose
of capacity control and of testing the hypothesis that a latent space
of 19 factors would mirror the 19 MovieLens genre indicators exam-
ined later in Section[3.2] All remaining parameters were left at their
Cornac defaults, as preliminary runs showed negligible sensitivity
outside the capacity dimension.

3.2 Categories Alignment of Latent Factors

Although Hierarchical Poisson Factorization produces purely nu-
merical item factors, an explicit link to human-readable categories

3 Colab notebook with code and instructions on how to run it is available at:
https://github.com/sabri-manai/Explainable- Next- Purchase- Recommend
ations- A- Multistakeholder- Framework

(movie genres) was required for explanatory purposes. The align-
ment proceeded in three steps.

Correlation matrix. First, the factor loadings for every movie
were merged with the 19 binary genre indicators supplied by the
MovieLens metadata. For each latent dimension and each genre, the
Pearson correlation coefficient was calculated, yielding a k x 19 ma-
trix whose entries quantify how strongly a factor is expressed by titles
in a given genre.

One-to-one matching. Each latent factor correlates with several
genres, yet a single genre label is required for interpretation. The
absolute correlation values were therefore negated. This conversion
turns the task of maximising correlations into the minimisation form
expected by the Hungarian algorithm. Applying the algorithm to the
negated matrix produced a one-to-one assignment that links every
factor to the genre with which it shares its strongest absolute corre-
lation.

Interpretation and use. The resulting factor—genre map was visu-
alized as a heat-map (Fig[4), allowing latent themes to be read off at a
glance. The same mapping was later used to aggregate SHAP attribu-
tions to genre level for user-facing explanations and to support busi-
ness stakeholders-oriented factor steering. No model weights were
modified in this procedure, and the alignment step was applied en-
tirely post-hoc.

3.3 Filtering with user preferences

To enhance the personalization of recommendations and tailor them
to individual user preferences, we incorporate a lightweight user pro-
filing mechanism. To maintain system robustness and avoid exces-
sive storage requirements, we do not retain the complete user inter-
action history. Instead, we store only a minimal subset of preference
information - specifically, categories explicitly marked as disliked
by the user during interactions with the system. This information is
stored in the user profile. Filtering based on user preferences is per-
formed in two stages. First, a preliminary filtering step removes items
the user has already seen from the set of model-predicted recommen-
dations (user history is obtained on the fly from the dataset). Second,
we further refine the candidate set by excluding any movies that be-
long to genres identified as disliked in the user’s profile. After each
recommendation round, the user is prompted to update their prefer-
ences by specifying any additional disliked genres. This process is
sequential and adaptive: each time a recommendation is provided,
the user has the opportunity to revise their preferences, and these up-
dates are immediately incorporated into subsequent filtering steps.

3.4 Serendipity and Business Rules

In order to combine serendipity with business goals, we propose a
hybrid approach that blends business-driven content promotion (via
unpopular items) with user-centric novelty (through category diver-
sity) |2} ensuring mutual benefit for both the user and the platform.

To enrich the recommendation system with diversity and surprise,
we implemented a serendipitous recommendation module that se-
lects two types of product suggestions for each user: a random un-
popular pick and a category-novelty-based pick. These recommenda-
tions are intentionally designed to highlight content that lies outside

4 The code for serendipity and business rules integration along with user pro-
files can be found at: https://github.com/hzych/Recommendations|
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the user’s usual viewing patterns and the platform’s typical popular-
ity trends.

A key business rule guiding this module is the promotion of un-
derexposed or lesser-known products. Increasing their visibility and
sales is strategically important for broadening market appeal, opti-
mizing inventory turnover, and enhancing overall profitability. This
goal is achieved through the following steps. First, we identify un-
popular content by selecting products that fall within the lowest quar-
tile of overall rating frequency - specifically, those with a number of
user ratings below the 25th percentile of the distribution of rating
counts. These are the items we aim to elevate. Next, we apply a se-
ries of filters: (1) the product must not have been rated by the user,
(2) it must not belong to any category the user has explicitly dis-
liked, and (3) it must have an average rating of at least 3.0, ensuring
a minimum level of quality.

From the resulting candidate set, two types of recommendations
are generated:

e Random Pick: An item is selected at random, introducing an ele-
ment of surprise and unpredictability.

e Category-Novelty Pick: An item is selected based on the novelty
of its category profile relative to the user’s historical preferences.
This process includes an additional step of computing a category
novelty score, which assigns higher values to products contain-
ing categories the user has interacted with less frequently, thereby
encouraging exploration into unfamiliar content areas.

Start
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Figure 2. Hybrid approach algorithm for serendipity and business rules in-
tegration.

Other common business rules, such as filtering out-of-stock items,
prioritizing high-margin or sponsored products, enforcing regional

availability, and capping repeat recommendations, can be incor-
porated via simple post-filtering or by adjusting recommendation
scores.

3.5 Explanation module

To explain recommendations to end-users, we apply SHAP at the
genre level on each top suggestion, revealing how individual genre
preferences influence the score. We chose SHAP for its community
validation, model-agnostic applicability (it works with any recom-
mendation model), and axiomatic guarantees: local accuracy (attri-
butions sum to the prediction), consistency (higher-impact features
receive larger values), and missingness (absent features score zero).

For business stakeholders, we employ a latent-factor loading ma-
trix from our matrix factorization model: rows correspond to la-
tent dimensions and columns to genres, showing how factors map
to domain concepts. While this model-specific analysis validates
the global structure of factorization-based recommenders, analogous
loading or correlation analyses could be devised for other factor-
driven architectures; pure black-box models without explicit factors
would require alternative techniques such as embedding-based con-
cept extraction.

4 Results

In this section we present both quantitative and qualitative evi-
dence for the effectiveness of the proposed pipeline. We begin by
benchmarking four representative recommendation models on the
MovieLens 100K dataset, then analyse their robustness in simu-
lated cold-start scenarios. We further evaluate the clarity of user-
and stakeholder-oriented explanations and, finally, discuss how
post-filtering rules aimed at serendipity and business constraints af-
fect overall performance.

4.1 Model Comparison

Across both validation and test splits (Tables E] and E]), the Hierarchi-
cal Poisson Factorisation (HPF) model delivers the strongest rank-
ing quality - topping AUC, MAP, and NDCG @10 - while remaining
reasonably fast to evaluate. Bayesian Personalised Ranking (BPR)
follows closely on accuracy and is far cheaper to train, making it
a pragmatic second choice. RecVAE reaches near-HPF AUC scores
but incurs the heaviest training cost, and Matrix Factorisation (MF)
trades accuracy for speed, achieving the lowest metrics yet the quick-
est training time.

Validation AUC MAP NDCG@10 Time (s)
BPR 090  0.09 0.12 1.54
MF 0.73  0.04 0.05 1.60
HPF 092  0.12 0.15 1.79
RecVAE 091  0.08 0.09 3.25

Table 1. Validation performance on MovieLens 100K.

Test AUC MAP NDCG@10 Train(s) Test(s)
BPR 090 0.14 0.19 2.06 2.22
MF 073 0.05 0.08 0.23 1.80
HPF 093  0.19 0.26 30.42 3.94
RecVAE 092  0.12 0.14 28638  4.44

Table 2. Test performance on MovieLens 100K.



4.2 Cold-Start Analysis

To assess robustness under sparse histories, a synthetic cohort of ten
brand-new users was created, each seeded with only three to six
randomly selected past movies. Despite the limited input, the HPF
model typically returned lists that were still genre-coherent: on av-
erage, roughly seven of the ten recommended titles shared at least
one genre with the user’s seeds, while the remaining two to three
items introduced new genres and thus encouraged discovery. Genre-
level SHAP visualisations indicated that each suggestion was usu-
ally driven by one or two strongly positive genres (e.g., Mystery =
+72%) and tempered by mildly negative ones (e.g., Drama ~ -8%).
These observations suggest that the pipeline can preserve relevance
and provide intuitive explanations even when only a handful of inter-
actions are available.

4.3  User-Focused Explanations

To illustrate explanation quality for cold-start users, and to simulate
diverse preferences and sparse histories, ten synthetic user profiles
were created, enabling controlled evaluation of the explanation mod-
ule. As the focus was on validating the explanation mechanism, no
real users were involved. We showcase the results for user labeled
new-u-4. Table 3] gives this user’s sparse history: five titles dom-
inated by Drama/War with a touch of Comedy and Horror. Table [
shows the Top-10 recommendations, headed by Star Wars (1977).

Title Genres Score
Killing Fields, The (1984) Drama, War 12.82
Afterglow (1997) Drama, Romance 0.14
Waiting for Guffman (1996) Comedy 2.51
Cat People (1982) Horror 2.28
Band Wagon, The (1953) Comedy, Musical 0.19
Table 3. Interaction history for user new-u-4.
Title Genres Score
Star Wars (1977) l/j\ption, Adventure, Romance, Sci- 47.95
1,
Godfather, The (1972) Action, Crime, Drama 35.73
Silence of the Lambs, The (1991) Drama, Thriller 34.10
8%(:7 5F)lew Over the Cuckoo’s Nest Drama 32.99
Raiders of the Lost Ark (1981) Action, Adventure 32.23
Schindler’s List (1993) Drama, War 31.37
Fargo (1996) Crime, Drama, Thriller 29.44
Casablanca (1942) Drama, Romance, War 27.59
Return of the Jedi (1983) éct{,(\)/n, Adventure, Romance, Sci- 26.94
1, War

Shawshank  Redemption,  The Drama 26.73
(1994)

Table 4. Top-10 recommendations for user new—-u-4.

Visual explanation. Figure [3] aggregates user- and item-factors
into genre-level SHAP values. War (+52.1%), Animation (+37.4%),
and Crime (+8.9%) provide the strongest positive signals; Fantasy
(-0.3%) exerts a mild negative influence.

|
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|
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|
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Figure 3. Genre-level SHAP explanation for the top recommendation.

Textual explanation. Explanations enable the generation of a tex-
tual recommendation prompt by populating a predefined template:

Based on your viewing history (<HistoryMovies>), we’re excited
to recommend <RecommendedMovie> as a perfect fit for you. This
choice is driven by your strong preference for <Genrel >, <Genre2>,
and <Genre3> genres. Because you've indicated you don’t enjoy
<DislikedGenre>, we’ve omitted it entirely, and since you're neu-
tral on <Genre4> and <Genre5>, those genres played virtually no
role in this pick. We think you're going to love it!

In case of user new-u-4:

Based on your viewing history (Killing Fields; Afterglow; Waiting
for Guffman; Cat People; Band Wagon), we’re excited to recommend
Star Wars as a perfect fit for you. This choice is driven by your strong
preference for War, Animation, and Crime genres. Because you've in-
dicated you don’t enjoy Fantasy, we’ve omitted it entirely, and since
you're neutral on Adventure and Comedy, those genres played virtu-
ally no role in this pick. We think you’re going to love it!

4.4  Stakeholder-Focused Explanations

Figure [] translates the abstract HPF embedding into a genre—factor
matrix that is easy for non-technical stakeholders to interpret. Each
row represents one of the model’s latent dimensions, while each col-
umn corresponds to a movie genre. Darker shades indicate that a
given factor is strongly expressed by items in that genre. Several pro-
nounced patterns emerge: one factor activates almost exclusively for
Western titles, another peaks for Horror, and a third clearly tracks
Animation/Children’s content, while neighboring factors jointly cap-
ture the Action—Adventure spectrum.

These visual cues let marketing teams map otherwise opaque la-
tent variables to recognizable content themes. By amplifying or sup-
pressing specific factors in a campaign, they can steer the recom-
mender toward inventory that best matches a target segment. For
example, pushing Factor 9 to feature Halloween releases, or tuning
down the Western-specific factor in regions where that genre under-
performs.

4.5 Preference modeling

To illustrate how filtering according to user preferences works, we
create a profile for user new—u-4, specifying Romance as a disliked
genre. This allows us to simulate a personalized content screening
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Figure 4. Average latent-factor strength per genre. Darker cells mark
stronger associations.

process based on explicit user preferences. Table [5]shows the recom-
mendations that remain after applying this filter, effectively removing
all titles associated with the unwanted genre. This step demonstrates
how simple preference-based filtering can help tailor recommenda-
tions to better align with a user’s tastes and avoid suggesting content
they are likely to reject.

Title Genres

Shawshank Redemption, The (1994)
Silence of the Lambs, The (1991)

Fargo (1996)

Godfather, The (1972)

Raiders of the Lost Ark (1981)
Schindler’s List (1993)

One Flew Over the Cuckoo’s Nest (1975)

Drama

Drama, Thriller
Crime, Drama, Thriller
Action, Crime, Drama
Action, Adventure
Drama, War

Drama

Table 5. Recommendations after filtering out disliked genres for user

new-u-4.

4.6 Serendipity and Business Rules

To illustrate the serendipitous recommendations, table [6]shows both
the random pick and the novel genre pick with their respective at-
tributes, such as title, genres, average rating (Avg Rating), and num-
ber of ratings (Num Ratings).

We can observe that the random pick adheres well to the business
rules of serendipitous recommendation. Although the genre, Drama,
is familiar to the user, the selected film has received only a single
rating. Despite its limited exposure, the rating is the maximum pos-
sible - 5.0 - indicating a potentially high-quality item. This makes it
a strong candidate for serendipity: an overlooked film that may align
with the user’s preferences, offering the possibility of surprising sat-
isfaction.

In contrast, the novelty-based pick excels in fulfilling both core
goals of serendipity-novelty and unexpected relevance. The recom-
mended title falls within the genres Action and Crime, which both,
according to the user’s history[3] represent a new area of interest. Ad-
ditionally, with just five ratings, it remains relatively undiscovered by
the broader user base. This not only increases the chance of offering

the user something fresh, but also supports business objectives such
as content discovery and catalog diversification.

Title & Genres

wansui

Avg Rating Num Ratings
5.00 1

Type
Random Pick

Aiqing
(1994)
Genre: Drama
Best Men (1997)
Genre:  Action,
Comedy, Crime,
Drama

Novel Pick 3.40 5

Table 6. Serendipitous recommendations for new—u-4: a random pick and
a genre-novelty-based pick.

Taken together, these two recommendations exemplify comple-
mentary approaches to serendipity: one driven by quality and un-
derexposure, the other by genre novelty and user exploration. This
demonstrates the effectiveness of using both randomization and per-
sonalized novelty scoring in surfacing engaging, lesser-known con-
tent.

5 Discussion

In this work, we address a clear literature gap: despite their state-of-
the-art accuracy, modern next-purchase recommendation pipelines
remain opaque "black boxes" to both end-users and organizational
stakeholders. To bridge this gap in a multistakeholder context, we
integrate explainable Al techniques that surface the drivers of each
suggestion, reduce cognitive load during decision making, and build
trust. We also embed business rules: serendipity and novelty picks
driven by user profiles to introduce under-exposed yet relevant items,
balancing discovery with precision. This demonstrates that trans-
parency, exploratory novelty, and high-performance recommenda-
tion can coexist while supporting professional information needs and
decision processes.

Our multistakeholder approach delivers tailored explanations for
both end-users and business stakeholders. For end-users, we apply
SHAP to generate model-agnostic, genre-level attributions that clar-
ify which past interactions or categories influenced each recommen-
dation, fostering trust, engagement, and enabling targeted market-
ing messages. For business stakeholders, we visualize model embed-
dings via a latent-factor loading matrix, mapping each latent dimen-
sion to movie genres, to link model structure with domain concepts,
support strategy refinement, business-rule tuning, model-selection
decisions, and thus potentially reduce cognitive load. This approach
generalizes to any model: when explicit factors are absent, we would
project user/item vectors (e.g., via PCA or UMAP) for equivalent
interpretability.

To ensure that new users receive meaningful suggestions while
still enabling exploration of unexpected content, we leveraged
lightweight user profiles that store minimal preference information.
By embedding business rules: novelty and serendipity filters, pro-
motion of under-exposed items, and category-based diversity, we
balanced personalized recommendations with overarching organiza-
tional goals. To address the cold-start problem, we simulated ten new
users with only a few interactions each and evaluated model perfor-
mance using NDCG@ 10, complemented by SHAP explanations to
highlight the most influential genre contributions, demonstrating ro-
bust recommendation quality even in sparse-data scenarios.

Despite promising results, this study has limitations. It relies solely
on the MovieLens dataset: pilot data from the PEER project were



not yet available at the time of writing, and the system has not been
tested in a live environment. Moreover, new users and profiles were
simulated, so real-world dynamics may differ.

6 Conclusion and Future Work

This work shows that a state-of-the-art next-purchase recommenda-
tion pipeline - enriched with explainable Al, business-rule—driven
serendipity, and user-profile—driven novelty - can deliver both high
accuracy and transparency, reduce users’ cognitive load, and satisfy
the needs of end-users and organizational stakeholders.

Expanding beyond the movie domain, we plan to test the method-
ology on diverse digital content platforms - such as the proprietary
data from the PEER project, music streaming services, e-learning
platforms, and news portals - validating its effectiveness in live envi-
ronments and refining business-rule logic under real-world user be-
haviors.
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